

HI-TECH

C

User’s Manual

HI-TECH C – User’s Manual i

CONTENTS
1. Introduction ..1

1.1. Features..1
1.2. System Requirements ..2
1.3. Using this Manual..2

2. Getting Started ..3

3. Compiler Structure..5

4. Operating Details ..7

5. Specific Features...13
5.1. ANSI C Standard Compatibility ..13
5.2. Type Checking...13
5.3. Member Names..13
5.4. Unsigned Types ...14
5.5. Arithmetic Operations ...14
5.6. Structure Operations ..15
5.7. Enumerated Types ...16
5.8. Initialization Syntax...16
5.9. Function Prototypes ...17
5.10. Void and Pointer to Void ...18
5.11. Type qualifiers ...19
5.12. 20
5.13. Pragma Directives..20

6. Machine Dependencies ...21
6.1. Predefined Macros ...21

7. Error Checking and Reporting..23

8. Standard Libraries...25
8.1. Standard I/O...25
8.2. Compatibility ...25
8.3. Libraries for Embedded Systems ...25
8.4. Binary I/O ..26
8.5. Floating Point Library..27

9. Stylistic Considerations ..29
9.1. Member Names..29
9.2. Use of Int ...30
9.3. Extern Declarations ...30

10. Memory Models..31

11. What Went Wrong..33

12. Z80 Assembler Reference Manual..35
12.1. Introduction..35
12.2. Usage ...35
12.3. The Assembly Language..36

12.3.1. Symbols...36
12.3.1.1. Temporary Labels ..37

12.3.2. Constants ...37
12.3.2.1. Character Constants ...38
12.3.2.2. Floating Constants ...38
12.3.2.3. Opcode Constants ..38

12.3.3. Expressions..38
12.3.3.1. Operators..38
12.3.3.2. Relocatability ...39

ii HI-TECH C – User’s Manual

12.3.4. Pseudo-ops ... 40
12.3.4.1. DEFB, DB..40
12.3.4.2. DEFF ...41
12.3.4.3. DEFW..41
12.3.4.4. DEFS ...41
12.3.4.5. EQU...41
12.3.4.6. DEFL ...41
12.3.4.7. DEFM ..42
12.3.4.8. END...42
12.3.4.9. COND, IF, ELSE, ENDC ..42
12.3.4.10. ELSE..42
12.3.4.11. ENDC ..42
12.3.4.12. ENDM ...43
12.3.4.13. PSECT ...43
12.3.4.14. GLOBAL ...43
12.3.4.15. ORG...44
12.3.4.16. MACRO...44
12.3.4.17. LOCAL..45
12.3.4.18. REPT ...46

12.3.5. IRP and IRPC ..47
12.3.6. Extended Condition Codes ..48

12.4. Assembler Directives ...48
12.5. Diagnostics...49
12.6. Z80/Z180/64180 Instruction Set ..50

13. Linker Reference Manual ...69
13.1. Relocation and Psects ..69

13.1.1. Program Sections...69
13.1.2. Local Psects and the Large Model...70

13.2. Global Symbols..70
13.3. Operation ...71
13.4. Examples..74
13.5. Invoking the Linker..74

14. Librarian ...75
14.1. The Library Format..75
14.2. Using..75
14.3. Examples..76
14.4. Supplying Arguments ..77
14.5. Listing Format..77
14.6. Ordering of Libraries ...77
14.7. Error Messages...78

15. Objtohex ...79

16. Cref ...83

APPENDIX 1 -- Error Messages...85

APPENDIX 2 -- Standard Library Functions ..99

INDEX...165

HI-TECH C – User’s Manual 1

HI-TECH C COMPILER

User's Manual

March 1989

1. Introduction

The HI-TECH C Compiler is a set of software which translates programs written in the C
language to executable machine code programs. Versions are available which compile programs
for operation under the host operating system, or which produce programs for execution in
embedded systems without an operating system.

1.1. Features

Some of HI-TECH C's features are:

A single command will compile, assemble and link entire programs.

The compiler performs strong type checking and issues warnings about various constructs which
may represent programming errors.

The generated code is extremely small and fast in execution.

A full run-time library is provided implementing all standard C input/output and other functions.

The source code for all run-time routines is provided.

A powerful general purpose macro assembler is included.

Programs may be generated to execute under the host operating system, or customized for
installation in ROM.

PC-DOS/MS-DOS
CP/M-86
Concurrent DOS
Atari ST
Xenix
Unix
CP/M-80

Table 1. Supported Hosts

2 HI-TECH C – User’s Manual

1.2. System Requirements

The HI-TECH C Compilers operate under the operating sytems listed in table 1. Ensure that the
version of the compiler you have matches the system you have. Note that in general you must
have a hard disk or two floppy disks on your system (it is possible to use one floppy disk of
800K or more). A hard disk is strongly recommended. Note that the CP/M-80 native compiler
does not have all the features described in this manual, as it has not been upgraded past V3.09
due to memory limitations. The Z80 cross compiler does support all of the features described
here and can be used to generate programs to execute under CP/M-80.

1.3. Using this Manual

The documentation supplied with the HI-TECH C compiler comprises two separate manuals
within the one binder. The manual you are reading now covers all versions of the compiler
(reflecting the portable nature of the compiler). A separate manual covers machine dependent
aspects of your compiler, e.g. installation.

This manual assumes you are familiar with the C language already. If you are not, you should
have at least one reference book covering C, of which a large number are available from most
computer bookstores, e.g. "A Book on C" by Kelley and Pohl. Other suitable texts are
"Programming in ANSI C" by S. Kochan and "The C Programming Language", by Kernighan
and Ritchie. You should read the "Getting Started" chapter in this manual, and the "Installation"
chapter in the machine-specific manual. This will provide you with sufficient information to
work through the introductory examples in the C reference you are using.

Once you have a basic grasp of the C language, the remainder of this manual will provide you
with information to enable you to explore the more advanced aspects of C.

Most of the manual covers all implementations of the HI-TECH C compiler. A separate manual
is provided for the macro assembler for your particular machine, and other machine-dependent
information.

HI-TECH C – User’s Manual 3

2. Getting Started

If using the compiler on a hard disk system you will need to install the compiler before using it.
See the "Installation" chapter for more details. If using a floppy disk based system, in general
you should have a copy of the distribution disk #1 in drive A: and maintain your files on a disk in
the B: drive. Again see the "Installation" chapter for more information.

main()
{

printf("Hello, world\n");
}

Fig. 1. Sample C Program

Before compiling your program it must be contained in a file with an extension (or file type, i.e.
that part of the name after the '.') of .C. For example you may type the program shown in fig. 1
into a file called HELLO.C. You will need a text editor to do this. Generally any text editor that
can create a straight ASCII file (i.e. not a "word processor" type file) will be suitable. If using
editors such as Wordstar, you should use the "non-document mode". Once you have the
program in such a file all that is required to compile it is to issue the C command, e.g. to compile
HELLO.C, simply type the command

C -V HELLO.C

Cross compilers (i.e. compilers that operate on one system but produce code for a separate target
system) will have a compiler driver named slightly differently, e.g. the 68HC11 cross compiler
driver is called C68.

If you are using a floppy disk based system (or a CP/M system) it may be necessary to specify
where to find the C command, e.g. if the C command is on a disk in drive A: and you are
working on B:, type the command

A:C -V HELLO.C

The compiler will issue a sign on message and then proceed to execute the various passes of the
compiler in sequence to compile the program. If you are using a floppy disk based system where
the compiler will not fit on a single disk you will be prompted to change disks whenever the
compiler cannot find a pass. In this case you should insert a copy of the next distribution disk in
drive A: and press RETURN.

As each pass of the compiler is about to be executed, a command line to that pass will be
displayed on the screen. This is because the -V option has been used. This stands for Verbose,
and had it not been given the compilation would have been silent except for the sign on message.
Error messages can be redirected to a file by using the standard output redirection notation, e.g.

> somefile

4 HI-TECH C – User’s Manual

After completion of compilation, the compiler will exit to command level. You will notice that
several temporary files created during compilation will have been deleted, and all that will be left
on the disk (apart from the original source file HELLO.C) will be an executable file. The name
of this executable file will be HELLO.EXE for MS-DOS, HELLO.PRG for the Atari ST,
HELLO.COM for CP/M-80 and HELLO.CMD for CP/M-86. For cross compilers it will be
called HELLO.HEX or HELLO.BIN depending on the default output format for the particular
compiler. To execute this program, simply type

HELLO

and you should be rewarded with the message "Hello, world!" on your screen. If you are using a
cross compiler you will need to put the program into EPROM or download to the target system
to execute it. Cross compilers do not produce programs executable on the host system.

There are other options that may be used with the C command, but you will not need to use them
unless you wish to do so. If you are new to the C language it will be advisable to enter and
compile a few simple programs (e.g. drawn from one of the C reference texts mentioned above)
before exploring other capabilities of the HI-TECH C compiler.

There is one exception to the above; if you compile a program which uses floating point
arithmetic (i.e. real numbers) you MUST specify to the compiler that the floating point library
should be searched. This is done with a –LF option at the END of the command line, e.g.

C -V FLOAT.C -LF

HI-TECH C – User’s Manual 5

3. Compiler Structure

The compiler is made up of several passes; each pass is implemented as a separate program.
Note that it is not necessary for the user to invoke each pass individually, as the C command runs
each pass automatically. Note that the machine dependent passes are named differently for each
processor, for example those with 86 in their name are for the 8086 and those with 68K in their
name are for the 68000.

The passes are:

CPP The preprocessor - handles macros and conditional compilation

P1 The syntax and semantic analysis pass. This writes intermediate code for

the code generator to read.

CGEN, CG86 etc. The code generator - produces assembler code.

OPTIM, OPT86 etc. The code improver - may optionally be omitted, reducing compilation

time at a cost of larger, slower code produced.

ZAS, AS86 etc. The assembler - in fact a general purpose macro assembler.

LINK The link editor - links object files with libraries.

OBJTOHEX This utility converts the output of LINK into the appropriate executable

file format (e.g. .EXE or .PRG or .HEX).

The passes are invoked in the order given. Each pass reads a file and writes a file for its
successor to read. Each intermediate file has a particular format; CPP produces C code without
the macro definitions and with uses of macros expanded; P1 writes a file containing a program in
an intermediate code; CGEN translates this to assembly code; AS produces object code, a binary
format containing code bytes along with relocation and symbol information. LINK accepts
object files and libraries of object files and writes another object file; this may be in absolute
form or it may preserve relocation information and be input to another LINK command.

There are also other utility programs:

LIBR Creates and maintains libraries of object modules

CREF Produces cross-reference listings of C or assembler programs.

6 HI-TECH C – User’s Manual

This page is left blank for your notes.

HI-TECH C – User’s Manual 7

4. Operating Details

HI-TECH C was designed for ease of use; a single command will compile, assemble and link a C
program. The syntax of the C command is as follows:

C [options] files [libraries]

The options are zero or more options, each consisting of a dash ('-'), a single key letter, and
possibly an argument, following the key letter with no intervening space. The files are one or
more C source files, assembler source files, or object files. Libraries may be zero or more library
names, or the abbreviated form -lname which will be expanded to the library name libname.lib.

The C command will, as determined by the specified options, compile any C source files given,
assemble them into object code unless requested otherwise, assemble any assembler source files
specified, and then link the results of the assemblies with any object or library files specified.

If the C command is invoked without arguments, then it will prompt for a command line to be
entered. This command line may be extended by typing a backslash ('\') on the end of the line.
Another line will then be requested. If the standard input of the command is from a file (e.g. by
typing C < afile) then the command lines will be read from that file. Within the file more than
one line may be given if each line but the last ends with a backslash. Note that this mechanism
does not work in MS-DOS batch file, i.e. the command file for the C command must be a
separate file. MS-DOS has no mechanism for providing long command lines or standard input
from inside a batch file.

The options recognized by the C command are as follows:

-S Leave the results of compilation of any C files as assembler output. C source code will be

interspersed as comments in the assembler code.

-C Leave the results of all compiles and assemblies as object files; do not invoke the linker.

This allows the linker to be invoked separately, or via the C command at a later stage.

-CR Produce a cross reference listing. -CR on its own will leave the raw cross-reference

information in a temporary file, allowing the user to run CREF explicitly, while
supplying a file name, e.g. -CRFRED.CRF will cause CREF to be invoked to process the
raw information into the specified file, in this case FRED.CRF.

-CPM For the Z80 cross compiler only, produce CP/M-80 COM files. Unless the -CPM option

is given, the Z80 cross compiler uses the ROM runtime startoff module and produces hex
or binary images. If the -CPM option is given, CP/M-80 runtime startoff code is linked
used and a CP/M-80 COM file is produced.

-O Invoke the optimizer on all compiled code; also requests the assembler to perform jump

optimization.

-OOUTFILE Specify a name for the executable file to be created. By default the name for the

executable file is derived from the name of the first source or object file specified to the
compiler. This option allows the default to be overridden. If no dot ('.') appears in the
given file name, an extension appropriate for the particular operating system will be

8 HI-TECH C – User’s Manual

added, e.g. -OFRED will generate a file FRED.EXE on MS-DOS or FRED.CMD on
CP/M-86. For cross compilers this also provides a means for specifying the output
format, e.g. specifying an output file PROG.BIN will make the compiler generate a
binary file, while specifying PROG. HEX will make it generate a hexadecimal file.

-V Verbose: each step of the compilation will be echoed as it is executed.

-I Specify an additional filename prefix to use in searching for #include files. For CP/M the

default prefix is A0:: (user number 0, disk drive A). For MS-DOS the default prefix is
A:\HITECH\. Under Unix and Xenix the default prefix is /usr/hitech/include/. Note that
on MS-DOS a trailing backslash must be appended to any directory name given as an
argument to -I; e.g. -I\FRED\ not -I\FRED. Under Unix a trailing slash should be added.

-D Define a symbol to the preprocessor: e.g. -DCPM will define the symbol CPM as though

via #define CPM 1.

-U Undefine a pre-defined symbol. The complement of -D.

-F Request the linker to produce a symbol file, for use with the debugger.

-R For the Z80 CP/M compiler only this option will link in code to perform command line

I/O redirection and wild card expansion in file names. See the description of _getargs()
in appendix 5 for details of the syntax of the redirections.

-X Strip local symbols from any files compiled, assembled or linked. Only global symbols

will remain.

-M Request the linker to produce a link map.

-A This option, for the Z80 only, will cause the compiler to produce an executable program

that will, on execution, self-relocate itself to the top of the TPA (Transient

HI-TECH C – User’s Manual 9

Program Area). This allows the writing of programs which may execute other programs
under themselves. Note that a program compiled in such a manner will not automatically
reset the bdos address at location 6 in order to protect itself. This must be done by the
program itself.

For cross compilers this provides a way of specifying to the linker the addresses that the
compiled program is to be linked at. The format of the option is -AROMADR,
RAMADR, RAMSIZE. ROMADR is the address of the ROM in the system, and is
where the executable code and initialized data will be placed. RAMADR is the start
address of RAM, and is where the bss psect will be placed, i.e. uninitialized data.
RAMSIZE is the size of RAM available to the program, and is used to set the top of the
stack.

For the 6801/6301/68HC11 compiler, the -A option takes a fourth value which is the
address of a four byte direct page area called ctemp which the compiled code uses as a
scratch pad. If the ctemp address is omitted from the -A option, it defaults to address 0.
Normally this will be acceptable, however some 6801 variants (like the 6303) have
memory mapped I/O ports at address 0 and start their direct page RAM at address $80.

For the large memory model of the 8051 compiler, the –A option takes the form -
AROMADR, INTRAM, EXTRAM, EXTSIZE. ROMADR is the address of ROM in the
system. INTRAM is the start address of internal RAM, and is where the rbss psect will
be placed. The 8051 internal stack will start after the end of the rbss psect. EXTRAM is
the start address of external RAM, and is where the bss psect will be placed. EXTSIZE
is the size of external RAM available to the program, and is used to set the top of the
external stack.

-B For compilers which support more than one "memory model", this option is used to select
which memory model code is to be generated for. The format of this option is -Bx where
x is one or more letters specifying which memory model to use. For the 8086, this option
is used to select which one of five memory models (Tiny, Small, Medium, Compact or
Large) is to be used.

For the 8051 compiler this this option is used to select which one of the three memory
models (Small, Medium or Large) is to be used. For the 8051 compiler only, this option
can also be used to select static allocation of auto variables by appending an A to the end
of the -B option. For example, -Bsa would select small model with static allocation of all
variables, while -Bm would select medium model with auto variables dynamically
allocated on the stack.

10 HI-TECH C – User’s Manual

-E By default the 8086 compiler will initialize the executable file header to request a 64K

data segment at run time. This may be overridden by the -E option. It takes an argument
(usually in hexadecimal representation) which is the number of BYTES (not paragraphs)
to be allocated to the program at run time. For example -E0ffff0h will request a
megabyte. Since this much will not be available, the operating system will allocate as
much as it can.

-W This options sets the warning level, i.e. it determines how picky the compiler is about

legal but dubious type conversions etc. -W0 will allow all warning messages (default), -
W1 will suppress the message "Func() declared implicit int". -W3 is recommended for
compiling code originally written with other, less strict, compilers. -W9 will suppress all
warning messages.

-H This option generates a symbol file for use with debuggers. The format of the symbol

file is described elsewhere. The default name of the symbol file is l.sym. An alternate
name may be specified with the option, e.g. -Hsymfile.abc.

-G Like -H, -G also generates a symbol file, but one that contains line and file number

information for a source level debugger. Like -H a file name may be specified. When
used in conjunction with -O, only partial optimization will be performed to avoid
confusing the debugger.

-P Execution profiling is available on native compilers running under DOS, CP/M-86 and

on the Atari ST. This option generates code to turn on execution profiling when the
program is run. A -H option should also be specified to provide a symbol table for the
profiler EPROF.

-Z For version 5.xx compilers only, the -Z option is used to select global optimization of the

code generated. For the 8086 and 6801/6301/68HC11 compilers the only valid -Z option
is -Zg. For the 8051 compiler, the valid -Z options are -Zg which invokes global
optimization, -Zs which optimizes for space, and -Zf which optimizes for speed. The s
and f options may be used with the g option, thus the options -Zgf and -Zgs are valid.
Speed and space optimization are mutually exclusive, i.e. the s and f options cannot be
used together.

-1 For the 8086 compiler only, request the generation of code which takes advantage of the

extra instructions of the 80186 processor. A program compiled with -1 will not execute
on an 8086 or 8088 processor. For the 68000 compiler, generate instructions for the
68010 processor.

HI-TECH C – User’s Manual 11

-2 Like -1 but for the 80286 and 68020.

-11 For the 6801/HC11 compiler, this option will request generation of instructions specific

to the 68HC11 processor.

-6301 For the 6801/HC11 compiler, this option will request generation of instructions specific

to the 6301/6303 processors.

Some examples of the use of the C command are:

c prog.c

c -mlink.map prog.c x.obj -lx

c -S prog.c

c -O -C -CRprog.crf prog.c prog2.c

c -v -Oxfile.exe afile.obj anfile.c -lf

Upper and lower case has been used in the above examples for emphasis: the compiler
does not distinguish between cases, although arguments specifying names, e.g. -D, are
inherently case sensitive.

Taking the above examples in order; the first compiles and links the C source file prog.c
with the standard C library. The second example will compile the file prog.c and link it
with the object file x.obj and the library libx.lib; a link map will be written to the file
link.map.

The third example compiles the file prog.c, leaving the assembler output in a file prog.as.
It does not assemble this file or invoke the linker. The next example compiles both
prog.c and prog2.c, invoking the optimizer on both files, but does not perform any
linking. A cross reference listing will be left in the file prog.crf.

The last example pertains to the 8086 version of the compiler. It runs the compiler with
the verbose option, and will cause anfile.c to be compiled without optimization to object
code, yielding anfile.obj, then afile.obj and anfile.obj will be linked together with the
floating point library (from the -LF option) and the standard library to yield the
executable program xfile.exe (assuming this is performed on an MS-DOS system). One
would expect this program to use floating point, if it did not then the -LF option would
have been required.

If more than one C or assembler source file is given to the C command, the name of each
file will be printed on the console as it is processed. If any fatal errors occur during the
compilation or assembly of source files, further source files will be processed, but the
linker will not be invoked.

12 HI-TECH C – User’s Manual

Other commands which may be issued by the user, rather than automatically by the C command,
are:

ZAS The Z80 assembler.

AS86 The 8086 assembler.

LINK The linker

LIBR The library maintainer

OBJTOHEX Object to hex converter

CREF Cross reference generator.

In general, these commands accept the same type of command line as the C command, i.e. zero
or more options (indicated by a leading '-') followed by one or more file arguments. If the linker
or the librarian is invoked with no arguments, it will prompt for a command line. This allows
command lines of more than 128 bytes to be entered. Input may also be taken from a file by
using the redirection capabilities (see _getargs() in the library function listing). See the
discussion above of the C command. These commands are described in further detail in their
respective manuals.

HI-TECH C – User’s Manual 13

5. Specific Features

The HI-TECH C compiler has a number of features, which while largely compatible with other C
compilers, contribute to more reliable programming methods.

5.1. ANSI C Standard Compatibility

At the time of writing the Draft ANSI Standard for the C Language was at an advanced stage,
though not yet an official standard. Accordingly it is not possible to claim compliance with that
standard, however HI-TECH C includes the majority of the new and altered features in the draft
ANSI standard. Thus it is in the sense that most people understand it "ANSI compatible".

5.2. Type Checking

Previous C compilers have adopted a lax approach to type checking. This is typified by the Unix
C compiler, which allows almost arbritary mixing of types in expressions. The HI-TECH C
compiler performs much more strict type checking, although in most cases only warning
messages are issued, allowing compilation to proceed if the user knows that the errors are
harmless. This would occur, for example, when an integer value was assigned to a pointer
variable. The generated code would almost certainly be what the user intended, however if in
fact it represented an error in the source code, the user is prompted to check and correct it where
necessary.

5.3. Member Names

In early C compilers member names in different structures were required to be distinct except
under certain circumstances. HI-TECH C, like most recent implementations of C, allows
member names in different structures and unions to overlap. A member name is recognized only
in the context of an expression whose type is that of the structure in which the member is
defined. In practice this means that a member name will be recognized only to the right of a '.' or
'->' operator, where the expression to the left of the operator is of type structure or pointer to
structure the same as that in which the member name was declared. This not only allows
structure names to be re-used without conflict in more than one structure, it permits strict
checking of the usage of members; a common error with other C compilers is the use of a
member name with a structure pointer of the wrong type, or worse with a variable which is a
pointer to a simple type.

There is however an escape from this, where the user desires to use as a structure pointer
something which is not declared as such. This is via the use of a typecast. For example, suppose
it is desired to access a memory-mapped i/o device, consisting of several registers. The
declarations and use may look something like the code fragment in fig. 2.

14 HI-TECH C – User’s Manual

struct io_dev
{

Short io_status; /* status */
Char io_rxdata; /* rx data */
Char io_txdata; /* tx data */

};

#define RXRDY 01 /* rx ready */
#define TXRDY 02 /* tx ready */

/* define the (absolute) device address */

#define DEVICE ((struct io_dev *)0xFF00)

send_byte(c)
char c;
{

/* wait till transmitter ready */
while(!(DEVICE->io_status & TXRDY)) continue;
/* send the data byte */
DEVICE->io_txdata = c;

}

Fig. 2. Use of Typecast on an Absolute Address

In this example, the device in question has a 16 bit status port, and two 8 bit data ports. The
address of the device (i.e. the address of its status port) is given as (hex)0FF00. This address is
typecast to the required structure pointer type to enable use of the structure member names. The
code generated by this will use absolute memory references to access the device, as required.

Some examples of right and wrong usage of member names are shown in fig. 3.

5.4. Unsigned Types

HI-TECH C implements unsigned versions of all integral types; i.e. unsigned char, short, int and
long. If an unsigned quantity is shifted right, the shift will be performed as a logical shift, i.e.
bringing zeros into the rightmost bits. Similarly right shifts of a signed quantity will sign extend
the rightmost bits.

5.5. Arithmetic Operations

On machines where arithmetic operations may be performed more efficiently in lengths shorter
than int, operands shorter than int will not be extended to int length unless necessary.

For example, if two characters are added and the result stored into another character, it is only
necessary to perform arithmetic in 8 bits, since any overflow into the top 8 bits will be lost.

HI-TECH C – User’s Manual 15

struct fred
{

Char a;
Int b;

} s1, * s2;

struct bill
{

float c;
long b;

} x1, * x2;

main()
{

/* wrong - c is not a member of fred */
s1.c = 2;

/* correct */
s1.a = 2;

/* wrong - s2 is a pointer */
s2.a = 2;

/* correct */
x2->b = 24L;

/* right, but note type conversion from long to int */
s2->b = x2->b;

}

Fig. 3. Examples of Member Usage

However, if the sum of two characters is stored into an int, the addition should be done in 16 bits
to ensure the correct result.

In accordance with the draft ANSI standard, operations on float rather than double quantities will
be performed in the shorter precision rather than being converted to double precision then back
again.

5.6. Structure Operations

HI-TECH C implements structure assignments, structure arguments and structure-valued
functions in their full generality. The example in fig. 4 is a function returning a structure. Some
legal (and illegal) uses of the function are also shown.

16 HI-TECH C – User’s Manual

struct bill
{

char a;
int b;

}
afunc()
{

struct bill x;

return x;
}

main()
{

struct bill a;

a = afunc(); /* ok */
pf("%d", afunc().a); /* ok */

/* illegal, afunc() cannot be assigned to,

therefore neither can afunc().a */
afunc().a = 1;

/* illegal, same reason */
afunc().a++;

}

Fig. 4. Example of a Function Returning a Structure

5.7. Enumerated Types

HI-TECH C supports enumerated types; these provide a structured way of defining named
constants.

The uses of enumerated types are more restricted than that allowed by the Unix C compiler, yet
more flexible than permitted by LINT. In particular, an expression of enumerated type may be
used to dimension arrays, as an array index or as the operand of a switch statement. Arithmetic
may be performed on enumerated types, and enumerated type expressions may be compared,
both for equality and with the relation operators. An example of the use of an enumerated type is
given in fig. 5.

5.8. Initialization Syntax

Kernighan and Ritchie in "The C Programming Language" state that pairs of braces may be
omitted from an initializer in certain contexts; the draft ANSI standard provides that a
conforming C program must either include all braces in an initializer, or leave

HI-TECH C – User’s Manual 17

/* a represents 0, b -> 1 */

enum fred { a, b, c = 4 };

main()
{

enum fred x, y, z;

x = z;
if(x < z)

func();
x = (enum fred)3;
switch(z) {
case a:
case b:
default:
}

}

Fig. 5. Use of an Enumerated Type

them all out. HI-TECH C allows any pairs of braces to be omitted providing that the front end of
the compiler can determine the size of any arrays being initialized, and providing that there is no
ambiguity as to which braces have been omitted. To avoid ambiguity, if any pairs of braces are
present, then any braces which would enclose those braces must also be present. The compiler
will complain ("initialization syntax") if any ambiguity is present.

5.9. Function Prototypes

A new feature of C included in the proposed ANSI for C, known as "function prototypes",
provides C with an argument checking facility, i.e. it allows the compiler to check at compile
time that actual arguments supplied to a function invocation are consistent with the formal
parameters expected by the function. The feature allows the programmer to include in a function
declaration (either an external declaration or an actual definition) the types of the parameters to
that function. For example, the code fragment shown in fig. 6 shows two function prototypes.

void fred(int, long, char *);

char *
bill(int a, short b, ...)
{

return a;
}

Fig. 6. Function Prototypes

The first prototype is an external declaration of the function fred(), which accepts one integer
argument, one long argument, and one argument which is a pointer to char. Any usage of fred()
while the prototype declaration is in scope will cause the actual parameters to be checked for
number and type against the prototype, e.g. if only two arguments were supplied or an integral
value was supplied for the third argument the compiler would report an error.

18 HI-TECH C – User’s Manual

In the second example, the function bill() expects two or more arguments. The first and second
will be converted to int and short respectively, while the remainder (if present) may be of any
type. The ellipsis symbol (...) indicates to the compiler that zero or more arguments of any type
may follow the other arguments. The ellipsis symbol must be last in the argument list, and may
not appear as the only argument in a prototype.

All prototypes for a function must agree exactly, however it is legal for a definition of a function
in the old style, i.e. with just the parameter names inside the parentheses, to follow a prototype
declaration provided the number and type of the arguments agree. In this case it is essential that
the function definition is in scope of the prototype declaration.

Access to unspecified arguments (i.e. arguments supplied where an ellipsis appeared in a
prototype) must be via the macros defined in the header file <stdarg.h>. This defines the macros
va_start, va_arg and va_end. See va_start in the library function listing for more information.

NOTE that is is a grave error to use a function which has an associated prototype unless that
prototype is in scope, i.e. the prototype MUST be declared (possibly in a header file) before the
function is invoked. Failure to comply with this rule may result in strange behaviour of the
program. HI-TECH C will issue a warning message ("func() declared implicit int") whenever a
function is called without an explicit declaration. It is good practice to declare all functions and
global variables in one or more header files which are included wherever the functions are
defined or referenced.

5.10. Void and Pointer to Void

The void type may be used to indicate to the compiler that a function does not return a value.
Any usage of the return value from a void function will be flagged as an error.

The type void *, i.e. pointer to void, may be used as a "universal" pointer type. This is intended
to assist in the writing of general purpose storage allocators and the like, where a pointer is
returned which may be assigned to another variable of some other pointer type. The compiler
permits without typecasting and without reporting an error the conversion of void * to any other
pointer type and vice versa. The programmer is advised to use this facility carefully and ensure
that any void * value is usable as a pointer to any other type, e.g. the alignment of any such
pointer should be suitable for storage of any object.

HI-TECH C – User’s Manual 19

5.11. Type qualifiers

The ANSI C standard introduced the concept of type qualifiers to C. These are keywords that
qualify the type to which they are applied. The type qualifiers defined by ANSI C are const and
volatile. HI-TECH C also implements several other type qualifiers. The extra qualifiers include:

Far
Near
Interrupt
fast interrupt
port

Not all versions of the compilers implement all of the extra qualifiers. See the machine
dependent section for further information.

When constructing declarations using type qualifiers, it is very easy to be confused as to the
exact semantics of the declaration. A couple of rules-of-thumb will make this easier. Firstly,
where a type qualifier appears at the left of a declaration it may appear with any storage class
specifier and the basic type in any order, e.g.

static void interrupt func();

is semantically the same as

interrupt static void func();

Where a qualifier appears in this context, it applies to the basic type of the declaration. Where a
qualifier appears to the right of one or more '*' (star) pointer modifiers, then you should read the
declaration from right to left, e.g.

char * far fred;

should be read as "fred is a far pointer to char". This means that fred is qualified by far, not the
char to which it points. On the other hand,

char far * bill;

should be read as "bill is a pointer to a far char", i.e. the char to which bill points is located in the
far address space. In the context of the 8086 compiler this will mean that bill is a 32 bit pointer
while fred is a 16 bit pointer. You will hear bill referred to as a "far pointer", however the
terminology "pointer to far" is preferred.

20 HI-TECH C – User’s Manual

5.12.

There are two methods provided for in-line assembler code in C programs. The first allows
several lines of assembler anywhere in a program. This is via the #asm and #endasm
preprocessor directives. Any lines between these two directives will be copied straight through
to the assembler file produced by the compiler. Alternatively you can use the asm("string");
construct anywhere a C statement is expected. The string will be copied through to the
assembler file. Care should be taken with using in-line assembler since it may interact with
compiler generated code.

5.13. Pragma Directives

The draft ANSI C standard provides for a #pragma preprocessor directive that allows compiler
implementations to control various aspects of the compilation process. Currently HI-TECH C
only supports one pragma, the pack directive. This allows control over the manner in which
members are allocated inside a structure. By default, some of the compilers (especially the 8086
and 68000 compilers) will align structure members onto even boundaries to optimize machine
accesses. It is sometimes desired to override this to achieve a particular layout inside a structure.
The pack pragma allows specification of a maximum packing factor. For example, #pragma
pack1(1) will instruct the compiler that no additional padding be inserted between structure
members, i.e. that all members should be aligned on boundaries divisible by 1. Similarly
#pragma pack(2) will allow alignment on boundaries divisible by 2. In no case will use of the
pack pragma force a greater alignment than would have been used for that data type anyway.

More than one pack pragma may be used in a program. Any use will remain in force until
changed by another pack or until the end of the file. Do not use a pack pragma before include
files such as <stdio.h> as this will cause incorrect declarations of run-time library data structures.

HI-TECH C – User’s Manual 21

6. Machine Dependencies

HI-TECH C eliminates many of the machine dependent aspects of C, since it uniformly
implements such features as unsigned char. There are however certain areas where machine
dependencies are inherent in the C language; programmers should be aware of these and take
them into account when writing portable code.

The most obvious of these machine dependencies is the varying size of C types; on some
machines an int will be 16 bits, on others it may be 32 bits. HI-TECH C conforms to the
following rules, which represent common practice in most C compilers.

char is at least 8 bits
short is at least 16 bits
long is at least 32 bits
int is the same as either short or long
float is at least 32 bits
double is at least as wide as float

Because of the variable width of an int, it is recommended that short or long be used wherever
possible in preference to int. The exception to this is where a quantity is required to correspond
to the natural word size of the machine.

Another area of machine differences is that of byte ordering; the ordering of bytes in a short or
long can vary significantly between machines. There is no easy approach to this problem other
than to avoid code which depends on a particular ordering. In particular you should avoid
writing out whole structures to a file (via fwrite()) unless the file is only to be read by the same
program then deleted. Different compilers use different amounts of padding between structure
members, though this can be modified via the #pragma pack(n) construct.

6.1. Predefined Macros

One technique through which machine unavoidable machine dependencies may be managed is
the predefined macros provided by each compiler to identify the target processor and operating
system (if any). These are defined by the compiler driver and may be tested with conditional
compilation preprocessor directives.

The macros defined by various compilers are listed in table 2. These can be used as shown in the
example in Table 2.

22 HI-TECH C – User’s Manual

|_Macro_______________Defined_for _________________|
| i8051 8051 processor family |
| i8086 8086 processor family |
| i8096 8096 processor family |
| z80 Z80 processor and derivatives |
| m68000 68000 processor family |
| m6800 6801, 68HC11 and 6301 processors |
| m6809 6809 processor |
| DOS MS-DOS and PC-DOS |
| CPM CP/M-80 and CP/M-86 |
| TOS Atari ST |
|__ |

Table 2. Predefined Macros

#if DOS
char * filename = "c:file";
#endif /* DOS */
#if CPM
char * filename = "0:B:afile";
#endif /* CPM */

Use this page for notes:

HI-TECH C – User’s Manual 23

7. Error Checking and Reporting

Errors may be reported by any pass of the compiler, however in practice the assembler and
optimizer will not encounter any errors in the generated code. The types of errors produced by
each pass are summarized below. In general any error will be indentified by the name of the
source file in which it was encountered, and the line number at which it was detected. P1 will
also nominate the name of the function inside which the error was detected.

Errors may be redirected to a file with the usual syntax, i.e. a 'greater than' symbol ('>') followed
by the name of a file into which the errors should be written. The file name may of course be a
device name, e.g. LST: for CP/M or PRN for MS-DOS.

CPP will report errors relating to macro definitions and expansions, as well as conditional
compilation.

P1 is the pass which reports most errors; it performs syntax and semantic checking of the input,
and will report both fatal and warning errors when encountered. Syntax errors will normally be
expressed as "symbol expected" or "symbol unexpected". Semantic errors may relate to
undeclared, redeclared or misdeclared variables. P1 will also report variable definitons which
are unused or unreferenced. These errors are warnings, as are most type checking errors.

When P1 encounters errors it will list the source-line containing the error on the screen, and
underneath display the error message and an up arrow pointing to the point at which the compiler
detected the error. In some cases the actual cause of the error may be earlier in the line or even
on previous line.

CGEN may occasionally report errors, usually warnings, and mostly related to unusual
combinations of types with constants, for example testing if an unsigned quantity is less than
zero. One fatal error produced by CGEN is "can't generate code for this expression" and means
that the expression currently being compiled is in some way too complicated to produce code for.
This can usually be overcome by rewriting the source code. Such errors are rare and will occur
only for unusual constructs.

The linker will report undefined or multiply defined symbols. Note that variable declarations
inside a header file which is included in more than one source file must be declared as extern, to
avoid multiply defined symbol errors. These symbols must then be defined in one and one only
source file.

A comprehensive list of error messages is included in an appendix.

24 HI-TECH C – User’s Manual

Use this page for notes

HI-TECH C – User’s Manual 25

8. Standard Libraries

8.1. Standard I/O

C is a language which does not specify the I/O facilites in the language itself; rather all I/O is
performed via library routines. In practice this results in I/O handling which is no less convenient
than any other language, with the added possibility of customising the I/O for a specific
application. For example it is possible to provide a routine to replace the standard getchar()
(which gets one character from the standard input) with a special getchar(). This is particulary
useful when writing code which is to run on a special hardware configuration, while maintaining
a high level of compatibility with "standard" C I/O.

There is in fact a Standard I/O library (STDIO) which defines a portable set of I/O routines.
These are the routines which are normally used by any C application program. These routines,
along with other non-I/O library routines, are listed in detail in a subsequent section of the
manual.

8.2. Compatibility

The libraries supplied with HI-TECH C are highly compatible with the ANSI libraries, as well as
the V7 UNIX libraries, both at the Standard I/O level and the UNIX system call level. The
Standard I/O library is complete, and conforms in all respects with the UNIX Standard I/O
library. The library routines implementing UNIX system call like functions are as close as
possible to those system calls, however there are some UNIX system calls that cannot be
simulated on other systems, e.g. the link() operation. However the basic low level I/O routines,
i.e. open, close, read, write and lseek are identical to the UNIX equivalents. This means that
many programs written to run on UNIX, even if they do not use Standard I/O, will run with little
modification when compiled with HI-TECH C.

8.3. Libraries for Embedded Systems

The cross compilers, designed to produce code for target systems without operating systems, are
supplied with libraries implementing a subset of the STDIO functions. Not provided are those
functions dealing with files. Included are printf(),scanf() etc. These operate by calling two low
level functions putch() and getch() which typically send and receive characters via a serial port.
Where the compiler is aimed at a single-chip micro with on-board UART this is used. The
source code for all these functions is supplied enabling the user to modify it to address a different
serial port.

26 HI-TECH C – User’s Manual

8.4. Binary I/O

On some operating systems, notably CP/M, files are treated differently according to whether they
contain ASCII (i.e. printable) or binary data. MD-DOS also suffers from this problem, not due
to any lack in the operating system itself, but rather because of the hangover from CP/M which
results in many programs putting a redundant ctrl-Z at the end of files. Unfortunately there is no
way to determine which type of data a file contains (except perhaps by the name or type of the
file, and this is not reliable). To overcome this difficulty, there is an extra character which may
be included in the MODE string to a fopen() call. To open a file for ASCII I/O, the form of the
fopen() call is:

fopen("filename.ext", "r") /* for reading */
fopen("filename.ext", "w") /* for writing */

To open a file for binary I/O, the character 'b' may be appended to the argument.

fopen("filename.ext", "rb")
fopen("filename.ext", "wb")

The additional character instructs the STDIO library that this file is to be handled in a strict
binary fashion. On CP/M or MS-DOS, a file opened in ASCII mode will have the following
special character handling performed by the STDIO routines:

newline ('\n') converted to carriage return/newline on output.

Return ('\r') ignored on input

Ctrl-Z interpreted as End-Of-File on input and, for CP/M only, appended

when closing the file.

The special actions performed on ASCII files ensure that the file is written in a format
compatible with other programs handling text files, while eliminating the requirement for any
special handling by the user program - the file appears to the user program as though it were a
UNIX-like text file.

None of these special actions are performed on a file opened in binary mode. This is required
when handling any kind of binary data, to ensure that spurious bytes are not inserted, and
premature EOF's are not seen.

Since the binary mode character is additional to the normal mode character, this usage is quite
compatible with UNIX C. When compiled on UNIX, the additional character will be ignored.

HI-TECH C – User’s Manual 27

A mention here of the term `stream' is appropriate; stream is used in relation to the STDIO
library routines to mean the source or sink of bytes (characters) manipulated by those routines.
Thus the FILE pointer supplied as an argument to the STDIO routines may be regarded as a
handle on the corresponding stream. A stream may be viewed as a featureless sequence of bytes,
originating from or being sent to a device or file or even some other indeterminate source. A
FILE pointer should not be confused with the 'file descriptors' used with the low-level I/O
functions open(), close(), read() and write(). These form an independent group of I/O functions
which perform unbuffered reads and writes to files.

8.5. Floating Point Library

HI-TECH C supports floating point as part of the language, however the Z80 implementation
provides single precision only; double floats are permitted but are no different to floats. In
addition, the standard library, LIBC.LIB, does not contain any floating point routines. These
have been separated out into another library, LIBF.LIB. This means that if this library is not
searched, no floating point support routines will be linked in, thus avoiding any size penalty for
the floating point support if it is not used. This is particulary important for printf and scanf, and
thus LIBF.LIB contains versions of printf and scanf that do support floating point formats.

Thus, if floating point is used, a -LF option should be used AFTER the source and/or object files
to the C command. E.g.:

C -V -O x.c y.c z.obj –LF

28 HI-TECH C – User’s Manual

Use this page for notes

HI-TECH C – User’s Manual 29

9. Stylistic Considerations

Although it is not the purpose of this manual to set out a coding standard for C, some comments
regarding use of some of the features of HI-TECH C may be useful.

9.1. Member Names

Although HI-TECH C allows the same structure or union member name to be used in more than
one structure or union, this may not be allowed by another C compiler. To help ensure
portability of the code, it is recommended that member names all be distinct, and a useful way of
ensuring this is to prefix each member name with one or two letters derived from the name of the
structure itself. An example is given in fig. 7.

struct tree_node
{

struct tree_node * t_left;
struct tree_node * t_right;
short t_operator;

};

Fig. 7. Member Naming

Because HI-TECH C insists on use of all intermediate names when referencing a member nested
inside several structures, some simple macro definitions can serve as a shorthand. An example is
given in fig. 8.

struct tree_node
{

short t_operator; union
{

struct tree_node * t_un_sub[2];
char * t_un_name; long t_un_val;

} t_un;
};

#define t_left t_un.t_un_sub[0]
#define t_right t_un.t_un_sub[1]
#define t_name t_un.t_un_name
#define t_val t_un.t_un_val

Fig. 8. Member Name Shorthand

This enables the variant components of the structure to be referred to by short names, while
guaranteeing portability and presenting a clean definition of the structure.

30 HI-TECH C – User’s Manual

9.2. Use of Int

It is recommended that the type int be avoided wherever possible, in preference to the types short
or long. This is because of the variable size of int, whereas short is commonly 16 bits and long
32 bits in most C implementations.

9.3. Extern Declarations

Some compilers permit a non-initialized global variable to be declared in more than one place,
with the multiple definitions being resolved by the linker as all defining the same thing. HI-
TECH C specifically disallows this, since it may lead to subtle bugs. Instead, global variables
may be declared extern in as many places as you wish, and must be defined in one and one only
place. Typically this will mean declaring global variables in a header file as extern, and defining
each variable in the file most closely associated with that variable.

This usage will be portable to virually all other C implementations.

HI-TECH C – User’s Manual 31

10. Memory Models

With many of the processors supported by the HI-TECH C compilers there are more than one
address space accessible to a program. Typically one address space is more economical to
access than another, larger address space. Thus it is desirable to be able to tailor a prorgram's use
of memory to achieve the greatest economy in addressing (thus minimizing program size and
maximizing speed) while allowing access to as much memory as the program requires.

This concept of different address spaces is not catered for by either K&R or ANSI C (except to
recognize the possibility of separate address spaces for code and data). Without any extensions
to the language itself it is possible to devise more than one memory model for a given processor,
selected at compile time. This has the effect of selecting one addressing method for all data
and/or code. This permits the model for a particular program to be chosen depending on that
program's memory requirements.

In many programs, however, only one or two data structures are large enough to need to be
placed in the larger address space. Selection of a "large" memory model for the whole of the
program makes the whole program larger and slower just to allow a few large data structures.
This can be overcome by allowing individual selection of the address space for each data
structure. Unfortunately this entails extensions to the language, never a desirable approach. To
minimize the effect of such extensions they should satisfy the following criteria:

1. As far as possible the extensions should be consistent with common practice.

2. The extensions should fit a machine-independent model to maximize portability across

processors and operating systems.

These goals have been achieved within HI-TECH C by means of the following model:

Each memory model defines three address spaces each for code and data. These address spaces
are known as the near, far and default spaces. Any object qualified by the near keyword will be
placed in the near address space, any object qualified by the far keyword shall be placed in the
far address space, and all other objects shall be placed in the default address space. The near
address space shall be a (possibly improper) subspace of the default address space, while the
default address space shall be a (possibly improper) subspace of the far address space. There
shall be up to three kinds of pointers corresponding to the three address spaces, each capable of
addressing an object in its own address space or a subspace of that address space.

32 HI-TECH C – User’s Manual

This implies that the address of an object may be converted to a pointer into a larger address
space, e.g. a near object may have its address converted to a pointer to far, but a far object may
not be able to be addressed by a pointer to near.

In practice the default address space will usually correspond exactly to either the near or far
address spaces. If all three address spaces correspond to the same memory then there is only one
memory model possible. This occurs with the 68000 processor. Where the default code and
data spaces may each correspond to either the near or far address spaces then there will be a
total of four memory models. This is the case with the 8086 processor.

The keywords far and near are supported by all the HI-TECH C compilers, but the exact
correspondence of address spaces is determined by the individual characteristics of each
processor and the choice of memory model (if there is a choice). However code written using
these keywords will be portable providing it obeys the constraints of the model described above.

This model also corresponds well with other implementations using the near and far keywords,
although such implementations do not appear to have been designed around a formal, portable
model.

HI-TECH C – User’s Manual 33

11. What Went Wrong

There are numerous error messages that the compiler may produce. Most of these relate to errors
in the source code (syntax errors of various kinds and so forth) but some represent limitations,
particularly of memory. The two passes most likely to be affected by memory limitations are the
code generator and the optimizer. The code generator will issue the message "No room" if it
runs out of dynamic memory. This can usually be eliminated by simplifying the expression at
the line nominated in the error message. The more complex the expression, the more memory
required to store the tree representing it. Reducing the number of symbols used in the program
will also help.

Note that this error is different from the message "Can't generate code for this expression" which
indicates that the expression is in some way too difficult for the code generator to handle. This
message will be encountered very infrequently, and can be eliminated by changing the
expression in some way, e.g. computing an intermediate value into a temporary variable.

The optimizer reads the assembler code for a whole function into memory at one time. Very
large functions will not fit, giving the error message "Optim: out of memory in _func" where
func is the name of the function responsible. In this case the function should be broken up into
smaller functions. This will only occur with functions with several hundred lines of C source
code. Good coding practice will normally limit functions to less than 50 lines each.

If a pass exits with the message "Error closing file", or "Write error on file", this usually
indicates that there is insufficient room on the current disk.

If you use a wordprocessing editor such as Wordstar, ensure that you use the "non-document"
mode or whatever the corresponding mode is. The edited file should not contain any characters
with the high bit set, and the line feed at the end of the line must be present. Lines should be not
more than 255 characters long.

When using floating point, ensure that you use a –LF flag at the END of the command line, to
cause the floating point library to be searched. This will cause floating versions of printf and
scanf to be linked in, as well as specific floating point routines.

If the non-floating version of printf is used with a floating format such as %f then it will simply
print the letter f.

If the linker gives an "Undefined symbol" message for some symbol which you know nothing
about, it is possible that it is a library routine which was not found during the library search due
to incorrect library ordering. In this case you can search the library twice, e.g. for the standard
library add a -LC to the end of the C command line, or -LF for the floating library. If you have
specified the library by name simply repeat its name.

34 HI-TECH C – User’s Manual

(Use this page for notes.)

HI-TECH C – User’s Manual 35

12. Z80 Assembler Reference Manual

12.1. Introduction

The assembler incorporated in the HI-TECH C compiler system is a full-featured relocating
macro assembler accepting Zilog mnemonics. These mnemonics and the syntax of the Z80
assembly language are described in the "Z80 Assembly Language Handbook" published by Zilog
and are included at the end of this manual as a reference. The assembler implements certain
extensions to the operands allowed, and certain additional pseudo-ops, which are described here.
The assembler also accepts the additional opcodes for the Hitachi 64180 and Z180 processors.

12.2. Usage

The assembler is named zas, and is invoked as follows:

ZAS options files ...

The files are one or more assembler source files which will be assembled, but note that all the
files are assembled as one, not as separate files. To assemble separate files, the assembler must
be invoked on each file separately. The options are zero or more options from the following list:

-N Ignore arithmetic overflow in expressions. The -N option suppresses the normal check

for arithmetic overflow. The assembler follows the "Z80 Assembly Language
Handbook" in its treatment of overflow, and in certain instances this can lead to an error
where in fact the expression does evaluate to what the user intended. This option may be
used to override the overflow checking.

-J Attempt to optimize jumps to branches. The -J option will request the assembler to

attempt to assemble jumps and conditional jumps as relative branches where possible.
Only those conditional jumps with branch equivalents will be optimized, and jumps will
only be optimized to branches where the target is in branch range. Note that the use of
this option slows the assembly down, due to the necessity for the assembler to make an
additional pass over the input code.

-U Treat undefined symbols as external. The -U option will suppress error messages relating

to undefined symbols. Such symbols are treated as externals in any case. The use of this
option will not alter the object code generated, but merely serves to suppress the error
messages.

36 HI-TECH C – User’s Manual

-Ofile Place the object code in file. The default object file name is constructed from the name

of the first source file. Any suffix or file type (i.e. anything following the rightmost dot
('.') in the name is stripped, and the suffix .obj appended. Thus the command

ZAS file1.as file2.z80

will produce an object file called file1.obj. The use of the -O option will override this
default convention, allowing the object file to be arbitrarily named. For example:

ZAS -ox.obj file1.obj

will place the object code in x.obj.

-Llist Place an assembly listing in the file list, or on standard output if list is null A listfile may

be produced with the -L option. If a file name is supplied to the option, the list file will
be created with that name, otherwise the listing will be written to standard output (i.e. the
console). List file names such as CON: and LST: are acceptable.

-Wwidth The listing is to be formatted for a printer of given width. The -W option

specifies the width to which the listing is to be formatted. E.g.

ZAS -Llst: -W80 x.as

will output a listing formatted for an 80 column printer to the list device.

-C This options requests ZAS to produce cross reference information in a file. The file will

be called xxx.crf where xxx is the base part of the first source file name. It will then be
necessary to run the CREF utility to turn this information into a formatted listing.

12.3. The Assembly Language

As mentioned above, the assembly language accepted by zas is based on the Zilog mnemonics.
You should have some reference book such as the "Z80 Assembly Language Handbook".
Described below are those areas where zas differs, or has extensions, compared to the standard
Zilog assembly language.

12.3.1. Symbols

The symbols (labels) accepted by the assembler may be of any length, and all characters are
significant. The characters used to form a symbol may be chosen from the upper and lower case
alphabetics, the digits 0-9, and the special symbols underscore ('_'), dollar ('$') and question mark

HI-TECH C – User’s Manual 37

('?'). The first character may not be numeric. Upper and lower case are distinct. The following
are all legal and distinct symbols.

An_identifier
an_identifier
an_identifier1
$$$
?$_123455

Note that the symbol $ is special (representing the current location) and may not be used as a
label. Nor may any opcode or pseudo-op mnemonic, register name or condition code name.
You should note the additional condition code names described later.

12.3.1.1. Temporary Labels

The assembler implements a system of temporary labels, useful for use within a localized section
of code. These help eliminate the need to generate names for labels which are referenced only in
the immediate vicinity of their definition, for example where a loop is implemented.

A temporary label takes the form of a digit string. A reference to such a label requires the same
digit string, plus an appended b or f to signify a backward or forward reference respectively.
Here is an example of the use of such labels.

entry_point: ;This is referenced from far away
ld b,10

1: dec c
jr nz,2f ;if zero, branch forward to 2:
ld c,8
djnz 1b ;decrement and branch back to 1:
jr 1f ;this does not branch to the ;same label as the djnz

2: call fred ;get here from the jr nz,2f
1: ret ;get here from the jr 1f

The digit string may be any positive decimal number 0 to 65535. A temporary label value may
be re-used any number of times. Where a reference to e.g. 1b is made, this will reference the
closest label 1: found by looking backwards from the current point in the file. Similarly 23f will
reference the first label 23: found by looking forwards from the current point in the file.

12.3.2. Constants

Constants may be entered in one of the radices 2, 8, 10 or 16. The default is 10. Constants in the
other radices may be denoted by a trailing character drawn from the following set:

38 HI-TECH C – User’s Manual

Character Radix Name

B 2 binary
O 8 octal
Q 8 octal
O 8 octal
Q 8 octal
H 16 hexadecimal
H 16 hexadecimal

Hexadecimal constants may also be specified in C style, for example LD A,0x21. Note that a
lower case b may not be used to indicate a binary number, since 1b is a backward reference to a
temporary label 1:.

12.3.2.1. Character Constants

A character constant is a single character enclosed in single quotes ('). Multi character constants
may be used only as an operand to a DEFM pseudo-op.

12.3.2.2. Floating Constants

A floating constant in the usual notation (e.g. 1.234 or 1234e-3) may be used as the operand to a
DEFF pseudo-op.

12.3.2.3. Opcode Constants

Any z80 opcode may be used as a constant in an expression. The value of the opcode in this
context will be the byte that the opcode would have assembled to if used in the normal way. If
the opcode is a 2-byte opcode (CB or ED prefix byte) only the second byte of the opcode will be
used. This is particularly useful when setting up jump vectors. For example:

Ld a,jp ;a jump instruction
Ld (0),a ;0 is jump to warm boot
Ld hl,boot ;done here
ld (1),hl

12.3.3. Expressions

Expressions are constructed largely as described in the "Z80 Assembly Language Handbook".

12.3.3.1. Operators

The following operators may be used in expressions:

HI-TECH C – User’s Manual 39

Operator Meaning
& Bitwise AND
* Multiplication
+ Addition
- Subtraction
.and. Bitwise AND
.eq. Equality test
.gt. Signed greater than
.high. Hi byte of operand
.low. Low byte of operand
.lt. Signed less than
.mod. Modulus
.not. Bitwise complement
.or. Bitwise or
.shl. Shift left
.shr. Shift right
.ult. Unsigned less than
.ugt. Unsigned greater than
.xor. Exclusive or
/ Divison
< Signed less than
= Equality
> Signed greater than
^ Bitwise or

Operators starting with a dot "." should be delimited by spaces, thus label .and. 1 is valid but
label.and.1 is not.

12.3.3.2. Relocatability

Zas produces object code which is relocatable. This means that it is not necessary to specify
assembly time where the code is to be located in memory. It is possible to do so, by use of the
ORG pseudo-op, however the preferred approach is to use program sections or psects. A psect is
a named section of the program, in which code or data may be defined at assembly time. All
parts of a psect will be loaded contiguously into memory, even if they were defined in separate
files, or in the same file but separated by code for another psect. For example, the following
code will load some executable instructions into the psect named text, and some data bytes into
the data psect.

40 HI-TECH C – User’s Manual

psect text, global

alabel: ld hl,astring
call putit
ld hl,anotherstring

psect data, global
astring:

defm 'A string of chars'
defb 0

anotherstring:
defm 'Another string'
defb 0

psect text

putit: ld a,(hl)

or a
ret z
call outchar
inc hl
jr putit

Note that even though the two blocks of code in the text psect are separated by a block in the
data psect, the two text psect blocks will be contiguous when loaded by the linker. The
instruction "ld hl,anotherstring" will fall through to the label "putit:" during execution. The
actual location in memory of the two psects will be determined by the linker. See the linker
manual for information on how psect addresses are determined.

A label defined in a psect is said to be relocatable, that is, its actual memory address is not
determined at assembly time. Note that this does not apply if the label is in the default
(unnamed) psect, or in a psect declared absolute (see the PSECT pseudo-op description below).
Any labels declared in an absolute psect will be absolute, that is their address will be determined
by the assembler.

With the version of ZAS supplied with version 7 or later of HI-TECH C, relocatable expressions
may be combined freely in expressions. Older versions of ZAS allowed only limited arithmetic
on relocatable expressions.

12.3.4. Pseudo-ops

The pseudo-ops are based on those described in the "Z80 Assembly Language Handbook", with
some additions.

12.3.4.1. DEFB, DB

This pseudo-op should be followed by a comma-separated list of expressions, which will be

HI-TECH C – User’s Manual 41

assembled into sequential byte locations. Each expression must have a value between -128 and
255 inclusive. DB can be used as a synonym for DEFB. Example:

DEFB 10, 20, 'a', 0FFH
DB 'hello world',13,10,0

12.3.4.2. DEFF

This pseudo-op assembles floating point constants into 32 bit HI-TECH C format floating point
constants. For example:

pi: DEFF 3.14159

12.3.4.3. DEFW

This operates in a similar fashion to DEFB, except that it assembles expressions into words,
without the value restriction. Example:

DEFW -1, 3664H, 'A', 3777Q

12.3.4.4. DEFS

Defs reserves memory locations without initializing them. Its operand is an absolute expression,
representing the number of bytes to be reserved. This expression is added to the current location
counter. Note however that locations reserved by DEFS may be initialized to zero by the linker
if the reserved locations are in the middle of the program. Example:

DEFS 20h ;reserve 32 bytes of memory

12.3.4.5. EQU

Equ sets the value of a symbol on the left of EQU to the expression on the right. It is illegal to
set the value of a symbol which is already defined. Example:

SIZE equ 46

12.3.4.6. DEFL

This is identical to EQU except that it may redefine existing symbols. Example:

42 HI-TECH C – User’s Manual

SIZE defl 48

12.3.4.7. DEFM

Defm should be followed by a string of characters, enclosed in single quotes. The ASCII values
of these characters are assembled into successive memory locations. Example:

DEFM 'A string of funny *@$ characters'

12.3.4.8. END

The end of an assembly is signified by the end of the source file, or the END pseudo-op. The
END pseudo-op may optionally be followed by an expression which will define the start address
of the program. This is not actually useful for CP/M. Only one start address may be defined per
program, and the linker will complain if there are more. Example:

END somelabel

12.3.4.9. COND, IF, ELSE, ENDC

Conditional assembly is introduced by the COND pseudoop. The operand to COND must be an
absolute expression. If its value is false (zero) the code following the COND up to the
corresponding ENDC pseudo-op will not be assembled. COND/ENDC pairs may be nested. IF
may be used as a synonym for COND. The ELSE pseudo operation may be included within a
COND/ENDC block, for example:

IF CPM
Call 5
ELSE
call os_func
ENDC

12.3.4.10. ELSE

See COND.

12.3.4.11. ENDC

See COND.

HI-TECH C – User’s Manual 43

12.3.4.12. ENDM

See MACRO.

12.3.4.13. PSECT

This pseudo-op allows specification of relocatable program sections. Its arguments are a psect
name, optionally followed by a list of psect flags. The psect name is a symbol constructed
according to the same rules as for labels, however a psect may have the same name as a label
without conflict. Psect names are recognized only after a PSECT pseudo-op. The psect flags are
as follows:

ABS Psect is absolute

GLOBAL Psect is global

LOCAL Psect is not global

OVRLD Psect is to be overlapped by linker

PURE Psect is to be read-only

If a psect is global, the linker will merge it with any other global psects of the same name from
other modules. Local psects will be treated as distinct from any other psect from another
module. Psects are global by default.

By default the linker concatenates code within a psect from various modules. If a psect is
specified as OVRLD, the linker will overlap each module's contribution to that psect. This is
particularly useful when linking modules which initialize e.g. interrupt vectors.

The PURE flag instructs the linker that the psect is to be made read-only at run time. The
usefulness of this flag depends on the ability of the linker to enforce the requirement. CP/M fails
miserably in this regard.

The ABS flag makes a psect absolute. The psect will be loaded at zero. This is useful for
statically initializing interrupt vectors and jump tables. Examples:

PSECT text, global, pure
PSECT data, global
PSECT vectors, ovrld

12.3.4.14. GLOBAL

Global should be followed by one more symbols (comma separated) which will be treated by the
assembler as global symbols, either internal or external depending on whether they are defined
within the current module or not. Example:

44 HI-TECH C – User’s Manual

GLOBAL label1, putchar, _printf

12.3.4.15. ORG

An ORG pseudo-op sets the current psect to the default (absolute) psect, and the location counter
to its operand, which must be an absolute expression. Example:

ORG 100H

12.3.4.16. MACRO

This pseudo-op defines a macro. It should be either preceded or followed by the macro name,
then optionally followed by a comma-separated list of formal parameters. The lines of code
following the MACRO pseudo-op up to the next ENDM pseudo-op will be stored as the body of
the macro. The macro name may subsequently be used in the opcode part of an assembler
statement, followed by actual parameters. The text of the body of the macro will be substituted
at that point, with any use of the formal parameters substituted with the corresponding actual
parameter. For example:

Print MACRO string
 psect data
999: db string,'$'
 psect text
 ld de,999b
 ld c,9
 call 5
 ENDM

When used, this macro will expand to the 3 instructions in the body of the macro, with the actual
parameters substituted for func and arg. Thus

print 'hello world'

expands to

 psect data
999: db 'hello world','$'
 psect text
 ld de,999b
 ld c,9
 call 5

HI-TECH C – User’s Manual 45

Macro arguments can be enclosed in angle brackets (‘’<’ and '>') to pass arbitrary text including
delimiter characters like commas as a single argument. For example, suppose you wanted to use
the print macro defined above to print a string which includes the carriage return and linefeed
characters. The macro invocation:

print 'hello world',13,10

would fail because 13 and 10 are treated as extra arguments and ignored. In order to pass a
string which includes commas as a single argument, you could write:

print <'hello world',13,10>

which would cause the text 'hello world',13,10 to be passed through as a single argument. This
would expand to the following code:

 psect data
999: db 'hello world',13,10,'$'
 psect text
 ld de,999b
 ld c,9
 call 5

ZAS supports two forms of macro declaration for compatibility with older versions of ZAS and
other Z80 assemblers. The macro name may be declared either in the label field before the
MACRO pseudo-op, or in the operand field after the MACRO pseudo-op. Thus these two
MACRO declarations are equivalent:

Bdos MACRO func,arg
 ld de,arg
 ld c,func
 call 5
 ENDM

and

MACRO bdos,func,arg
 ld de,arg
 ld c,func
 call 5
 ENDM

12.3.4.17. LOCAL

The LOCAL pseudo-op allows unique labels to be defined for each expansion of a macro. Any
symbols listed after the LOCAL directive will have a unique assembler-generated symbol
substituted for them when the macro is expanded. For example:

46 HI-TECH C – User’s Manual

Copy MACRO source,dest,count
 LOCAL nocopy
 push af
 push bc
 lLd bc,source
 ld a,b
 or c
 jr z,nocopy
 push de
 push hl
 ld de,dest
 ld hl,source
 ldir
 pop hl
 pop de
nocopy: pop bc
 pop af
 ENDM

when expanded will include a unique assembler generated label in place of nocopy. For
example, copy (recptr),buf,(recsize) will expand to:

 push af
 push bc
 ld bc,(recsize)
 ld a,b
 or c
 jr z,??0001
 push de
 push hl
 ld de,buf
 ld hl,(recptr)
 ldir
 pop hl
 pop de
??0001: pop bc pop af

if invoked a second time, the label nocopy would expand to ??0002.

12.3.4.18. REPT

The REPT pseudo-op defines a temporary macro which is then expanded a number of times, as
determined by its argument. For example:

REPT 3
ld (hl),0
inc hl
ENDM

will expand to

HI-TECH C – User’s Manual 47

ld (hl),0
inc hl
ld (hl),0
inc hl
ld (hl),0
inc hl

12.3.5. IRP and IRPC

The IRP and IRPC directives are similar to REPT, however instead of repeating the block a fixed
number of times it is repeated once for each member of an argument list. In the case of IRP the
list is a conventional macro argument list, in the case of IRPC it is successive characters from a
string. For example:

 IRP string,<'hello world',13,10>,'arg2'
 LOCAL str
 psect data
str: db string,'$'
 psect text
 ld c,9
 ld de,str
 call 5
 ENDM

would expand to

 psect data
??0001: db 'hello world',13,10,'$'
 psect text
 ld c,9
 ld de,??0001
 call 5
 psect data
??0002: db 'arg2','$'
 psect text
 ld c,9
 ld de,??0002
 call 5

Note the use of LOCAL labels and angle brackets in the same manner as with conventional
macros.

IRPC is best demonstrated using the following example:

 IRPC char,ABC
 ld c,2
 ld e,'char'
 call 5
 ENDM

48 HI-TECH C – User’s Manual

will expand to:

 ld c,2
 ld e,'A'
 call 5
 ld c,2
 ld e,'B'
 call 5
 ld c,2
 ld e,'C'
 call 5

12.3.6. Extended Condition Codes

The assembler recognizes several additional condition codes. These are:

Code	Equivalent	Meaning
alt	m	Arithmetic less than
llt	c	Logical less than
age	p	Arithmetic greater or equal
lge	nc	Logical greater or equal
di		Use after ld a,i for test-
ei		ing state of interrupt
		enable flag - enabled or
		enable flag - enabled or
		disabled respectively

12.4. Assembler Directives

An assembler directive is a line in the source file which produces no code, but rather which
modifies the behaviour of the assembler. Each directive is recognized by the presence of an
asterisk in the first column of the line, followed immediately by a word, only the first character
of which is looked at. The line containing the directive itself is never listed. The directives are:

*Title Use the text following the directive as a title for the listing.

*Heading Use the text following the directive as a subtitle for the listing; also causes an *Eject.

*List May be followed by ON or OFF to turn listing on or off respectively. Note that this

directive may be used inside a macro or include file to control listing of that macro or
include file. The previous listing state will be restored on exit from the macro or
include file.

HI-TECH C – User’s Manual 49

*Include The file named following the directive will be included in the assembly at that point.

*Eject A new page will be started in the listing at that point. A form feed character in the

source will have the same effect.

Some examples of the use of these directives:

*Title Widget Control Program
*Heading Initialization Phase

*Include widget.i

12.5. Diagnostics

An error message will be written on the standard error stream for each error encountered in the
assembly. This message identifies the file name and line number and describes the error. In
addition the line in the listing where the error occurred will be flagged with a single character to
indicate the error. The characters and the corresponding messages are:

50 HI-TECH C – User’s Manual

A: Absolute expression required

B: Bad arg to *L

Bad arg to IM
Bad bit number
Bad character constant
Bad jump condition

D: Directive not recognized

Digit out of range

E: EOF inside conditional

Expression error

G: Garbage after operands

Garbage on end of line

I: Index offset too large

J: Jump target out of range

L: Lexical error

M: Multiply defined symbol

O: Operand error

P: Phase error

Psect may not be local and global

R: Relocation error

S: Size error

Syntax error

U: Undefined symbol

Undefined temporary label
Unterminated string

12.6. Z80/Z180/64180 Instruction Set

The remainder of this chapter is devoted to a complete instruction set listing for the Z80, Z180,
64180 and NSC800 processors. The Z180 and 64180 will execute all Z80 instructions, although
the timing is different.

HI-TECH C – User’s Manual 51

52 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 53

54 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 55

56 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 57

58 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 59

60 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 61

62 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 63

64 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 65

66 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 67

68 HI-TECH C – User’s Manual

HI-TECH C – User’s Manual 69

13. Linker Reference Manual

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C
source files. This means that a program may be divided into several source files, each of which
may be kept to a manageable size for ease of editing and compilation, then each object file
compiled separately and finally all the object files linked together into a single executable
program.

The assembler is described in the machine-specific manual. This appendix describes the theory
behind and the usage of the linker.

13.1. Relocation and Psects

The fundamental task of the linker is to combine several relocatable object files into one. The
object files are said to be relocatable since the files have sufficient information in them so that
any references to program or data addresses (e.g. the address of a function) within the file may
be adjusted according to where the file is ultimately located in memory after the linkage process.
Thus the file is said to be relocatable. Relocation may take two basic forms; relocation by name,
i.e. relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by
the base address of a particular section of code, for example the section of code containing the
actual excutable instructions.

13.1.1. Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections,
which will be referred to as psects. These psects represent logical groupings of certain types of
code bytes in the program. The section of the program containing executable instructions is
normally referred to as the text psect. Other sections are the initialized data psect, called simply
the data psect, and the uninitialized data psect, called the bss psect.

In fact the linker will handle any number of psects, and in fact more may be used in special
applications. However, the C compiler uses only the three mentioned, and the names text, data
and bss are simply chosen for identification; the linker assigns no special significance to the
name of a psect.

The difference between the data and bss psects may be exemplified by considering two external
variables; one is initialized to the value 1, and the other is not initialized. The first will be placed
into the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on
startup of the program, thus the second variable will be initialized at run time to zero. The first
will however occupy space in the program file, and will maintain its initialized value of 1 at
startup. It is quite possible to modify the value of a variable in the data psect during execution,
however it is better practice not to do so, since this leads to more consistent use of variables, and
allows for restartable and romable programs.

70 HI-TECH C – User’s Manual

The text psect is the section into which all executable instructions are placed. On CP/M-80 the
text psect will normally start at the base of the TPA, which is where execution commences. The
data psect will normally follow the text psect, and the bss will be last. The bss does not occupy
space in the program (.COM) file. This ordering of psects may be overridden by an option to the
linker. This is especially useful when producing code for special hardware.

For MS-DOS and CP/M-86 the psects are ordered in the same way, but since the 8086 processor
has segment registers providing relocation, both the text and data psects start at 0, even though
they will be loaded one after the other in memory. This allows 64k code and 64k data and stack.
Sufficient information is placed in the executable file (.EXE or .CMD) for the operating system
to load the program in memory.

13.1.2. Local Psects and the Large Model

Since for practical purposes the psects are limited to 64K on the 8086, to allow more than 64K
code the compiler makes use of local psects. A psect is considered local if the .psect directive has
a LOCAL flag. Any number of local psects may be linked from different modules without being
combined even if they have the same name. Note however that no local psect may have the
same name as a global psect.

All references to a local psect within the same module (or within the same library) will be treated
as references to the same psect. Between modules, however, two local psects of the same name
are treated as distinct. In order to allow collective referencing of local psects via the -P option
(described later) a local psect may have a class name associated with it. This is achieved with
the CLASS flag on the .psect directive.

13.2. Global Symbols

The linker handles only symbols which have been declared as global to the assembler. From the
C source level, this means all names which have storage class external and which are not
declared as static. These symbols may be referred to by modules other than the one in which
they are defined. It is the linker's job to match up the definition of a global symbol with the
references to it.

HI-TECH C – User’s Manual 71

13.3. Operation

A command to the linker takes the following form:

LINK options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in
some way. Files is one or more object files, and zero or more library names. The options will be
recognized in upper or lower case. They are recognized by the linker are as follows:

-R Leave the output relocatable.

-L Retain absolute relocation info. -LM will retain only segement relocation information.

-I Ignore undefined symbols.

-N Sort symbols by address.

-Caddr Produce a binary output file offset by addr.

-S Strip symbol information from the output file.

-X Suppress local symbols in the output file.

-Z Suppress trivial (compiler-generated) symbols in the output file.

-Oname Call the output file name.

-Pspec Spec is a psect location specification.

-Mname Write a link map to the file name.

-Usymbol Make symbol initially undefined.

-Dfile Write a symbol file.

-Wwidth Specify map width.

Taking each of these in turn:

The -R option will instruct the linker to leave the output file (as named by a -O option, or l.obj by
default) relocatable. This is normally because there are further files to be linked in, and the
output of this link will be used as input to the linker subsequently. Without this option, the linker
will make the output file absolute, that is with all relocatable addresses made into absolute
references. This option may not be used with the -L or -C options.

72 HI-TECH C – User’s Manual

The -L option will cause the linker to output null relocation information even though the file will
be absolute. This information allows self-relocating programs to know what addresses must be
relocated at run time. This option is not usable with the -C option. In order to create an
executable file (i.e. a .COM file) the program objtohex must be used. If a -LM option is used,
only segment relocation information will be retained. This is used in conjuction with the large
memory model. Objtohex will use the relocation information (when invoked with a -L flag) to
insert segment relocation addresses into the executable file.

The -I option is used when it is desired to link code which contains symbols which are not
defined in any module. This is normally only used during top-down program development,
when routines are referenced in code written before the routines themselves have been coded.

When obtaining a link map via the -M option, the symbol table is by default sorted in order of
symbol name. To sort in order of address, the -N option may be used.

The output of the linker is by default an object file. To create an executable program, this must
be converted into an executable image. For CP/M this is a .COM file, which is simply an image
of the executable program as it should appear in memory, starting at location 100H. The linker
will produce such a file with the -C100H option. File formats for other applications requiring an
image binary file may also be produced with the -C option. The address following the -C may be
given in decimal (default), octal (by using o or O suffix) or hexadecimal (by using an h or H
suffix).

Note that because of the complexity of the executable file formats for MS-DOS and CP/M-86,
LINK will not produce these (.EXE and .CMD resp.) formats directly. The compiler
automatically runs OBJTOHEX with appropriate options to generate the correct file format.

The -S, -X and -Z options, which are meaningless when the -C option is used, will strip
respectively all symbols, all local symbols or all trivial local symbols from the output file.
Trivial symbols are symbols produced by the compiler, and have the form of one of a set of
alphabetic characters followed by a digit string.

The default output file name is l.obj, or l.bin when the -C option is used. This may be
overridden by the -Oname option. The output file will be called name in this instance. Note that
no suffix is appended to the name; the file will be called exactly the argument to the option.

For certain specialized applications, e.g. producing code for an embedded microprocessor,

HI-TECH C – User’s Manual 73

it is necessary to specify to the linker at what address the various psects should be located. This
is accomplished with the -P option. It is followed by a specification consisting of a
commaseparated list of psect names, each with an optional address specification. In the absence
of an address specification for a psect listed, it will be concatenated with the previous psect. For
example

-Ptext=0c000h,data,bss=8000h

This will cause the text psect to be located at 0C000H, the data psect to start at the end of the text
psect, and the bss psect to start at 8000H. This may be for a processor with ROM at 0C000H and
RAM at 8000H.

Where the link address, that is the address at which the code will be addressed at execution time,
and the load address, that is the address offset within the output file, are different (e.g for the
8086) it is possible to specify the load address separately from the link address. For example:

-Ptext=100h/0,data=0C000h/

This specification will cause the text segment to be linked for execution at 100h, but loaded in
the output file at 0, while the data segment will be linked for 0C000h, but loaded contiguously
with the text psect in the file. Note that if the slash (`/') is omitted, the load address is the same
as the link address, while if the slash is supplied, but not followed by an address, the psect will
be loaded after the previous psect.

In order to specify link and load addresses for local psects, the group name to which the psects
belong may be used in place of a global psect name. The local psects will then have a link
address as specified in the -P option, and load addresses incrementing upwards from the
specified load address.

The -Mname option requests a link map, containing symbol table and module load address
information to be written onto the file name. If name is omitted, the map will be written to
standard output. -W may be used to specify the desired width of the map.

The -U option allows the specification to the linker of a symbol which is to be initially entered
into the symbol table as undefined. This is useful when loading entirely from libraries. More
than one -U flag may be used.

If it is desired to use the debugger on the program being linked, it is useful to produce a symbol
file. The -Dfile option will write such a symbol file onto the named file, or l.sym if no file is
given. The symbol file consists of a list of addresses and symbols, one per line.

74 HI-TECH C – User’s Manual

13.4. Examples

Here are some examples of using the linker. Note however that in the normal case it is not
necessary to invoke the linker explicitly, since it is invoked automatically by the C command.

LINK -MMAP -C100H START.OBJ MAIN.OBJ A:LIBC.LIB

This command links the files start.obj and main.obj with the library a:libc.lib. Only those
modules that are required from the library will be in fact linked in. The output is to be in .COM
format, placed in the default file l.bin. A map is to be written to the file of the name map. Note
that the file start.obj should contain startup code, and in fact the lowest address code in that file
will be executed when the program is run, since it will be at 100H.

LINK -X -R -OX.OBJ FILE1.OBJ FILE2.OBJ A:LIBC.LIB

The files file1.obj and file2.obj will be linked with any necessary routines from a:libc.lib and left
in the file x.obj. This file will remain relocatable. Undefined symbols will not cause an error.
The file x.obj will probably later be the object of another link invocation. All local symbols will
be stripped from the output file, thus saving space.

13.5. Invoking the Linker

The linker is called LINK, and normally resides on the A: drive, under CP/M, or in the directory
A:\HITECH\ under MS-DOS. It may be invoked with no arguments, in which case it will
prompt for input from standard input. If the standard input is a file, no prompts will be printed.
The input supplied in this manner may contain lower case, whereas CP/M converts the entire
command line to upper case by default. This is useful with the -U and -P options. This manner
of invocation is generally useful if the number of arguments to LINK is large. Even if the list of
files is too long to fit on one line, continuation lines may be included by leaving a backslash ('\')
at the end of the preceding line. In this fashion, LINK commands of almost unlimited length
may be issued.

HI-TECH C – User’s Manual 75

14. Librarian

The librarian program, LIBR, has the function of combining several object files into a single file
known as a library. The purposes of combining several such object modules are several.

a. fewer files to link
b. faster access
c. uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a
library differently from object files. If an object file is specified to the linker, it will be linked
into the final linked module. A module in a library, however, will only be linked in if it defines
one or more symbols previously known, but not defined, to the linker. Thus modules in a library
will be linked only if required. Since the choice of modules to link is made on the first pass of
the linker, and the library is searched in a linear fashion, it is possible to order the modules in a
library to produce special effects when linking. More will be said about this later.

14.1. The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is
maintained a directory of the modules and symbols in the library. Since this directory is smaller
than the sum of the modules, the linker is speeded up when searching a library since it need read
only the directory and not all the modules on the first pass. On the second pass it need read only
those modules which are required, seeking over the others. This all minimizes disk i/o when
linking.

It should be noted that the library format is geared exclusively toward object modules, and is not
a general purpose archiving mechanism as is used by some other compiler systems. This has the
advantage that the format may be optimized toward speeding up the linkage process.

14.2. Using

The librarian program is called LIBR, and the format of commands to it is as follows:

LIBR k file.lib file.obj ...

Interpreting this, LIBR is the name of the program, k is a key letter denoting the function
requested of the librarian (replacing, extracting or deleting modules, listing modules or symbols),
file.lib is the name of the library file to be operated on, and file.obj is zero or more object file
names.

76 HI-TECH C – User’s Manual

The key letters are:

r replace modules
d delete modules
x extract modules
m list module names
s list modules with symbols

When replacing or extracting modules, the file.obj arguments are the names of the modules to be
replaced or extracted. If no such arguments are supplied, all the modules in the library will be
replaced or extracted respectively. Adding a file to a library is performed by requesting the
librarian to replace it in the library. Since it is not present, the module will be appended to the
library. If the r key is used and the library does not exist, it will be created.

Under the d key letter, the named object files will be deleted from the library. In this instance, it
is an error not to give any object file names.

The m and s key letters will list the named modules and, in the case of the s key letter, the
symbols defined or referenced within (global symbols only are handled by the librarian). As
with the r and x key letters, an empty list of modules means all the modules in the library.

14.3. Examples

Here are some examples of usage of the librarian.

LIBR m file.lib List all modules in the library file.lib.

LIBR s file.lib a.obj b.obj c.obj List the global symbols in the modules a.obj, b.obj and

c.obj

LIBR r file.lib 1.obj 2.obj Replace the module 1.obj in the file file.lib with the

contents of the object file 1.obj, and repeat for 2.obj. If the
object module is not already present in the library, append
it to the end.

LIBR x file.lib Extract, without deletion, all the modules in file.lib and

write them as object files on disk.

LIBR d file.lib a.obj b.obj 2.obj Delete the object modules a.obj, b.obj and 2.obj from the

library file.lib.

HI-TECH C – User’s Manual 77

14.4. Supplying Arguments

Since it is often necessary to supply many object file arguments to LIBR, and command lines are
restricted to 127 characters by CP/M and MS-DOS, LIBR will accept commands from standard
input if no command line arguments are given. If the standard input is attached to the console,
LIBR will prompt. Multiple line input may be given by using a backslash as a continuation
character on the end of a line. If standard input is redirected from a file, LIBR will take input
from the file, without prompting. For example:

LIBR libr> r file.lib 1.obj 2.obj 3.obj \ libr> 4.obj 5.obj 6.obj

will perform much the same as if the .obj files had been typed on the command line. The libr>
prompts were printed by LIBR itself, the remainder of the text was typed as input.

LIBR <lib.cmd

Libr will read input from lib.cmd, and execute the command found therein. This allows a
virtually unlimited length command to be given to LIBR.

14.5. Listing Format

A request to LIBR to list module names will simply produce a list of names, one per line, on
standard output. The s keyletter will produce the same, with a list of symbols after each module
name. Each symbol will be preceded by the letter D or U, representing a definition or reference
to the symbol respectively. The -W option may be used to determine the width of the paper for
this operation. For example LIBR -w80 s file.lib will list all modules in file.lib with their global
symbols, with the output formatted for an 80 column printer or display.

14.6. Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the
command line. When updating a library the order of the modules is preserved. Any new
modules added to a library after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a
module which references a symbol defined in another module in the same library, the module
defining the symbol should come after the module referencing the symbol.

78 HI-TECH C – User’s Manual

14.7. Error Messages

Libr issues various error messages, most of which represent a fatal error, while some represent a
harmless occurence which will nonetheless be reported unless the -w option was used. In this
case all warning messages will be suppressed.

HI-TECH C – User’s Manual 79

15. Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any
other format required must be produced by running the utility program OBJTOHEX. This
allows conversion of object files as produced by the linker into a variety of different formats,
including various hex formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. If outputfile is ommitted it defaults to l.hex or l.bin depending
on whether the -b option is used. The inputfile defaults to l.obj.

The options are:

-Baddr Produce a binary image output. This is similar to the -C option of the linker. If

addr is supplied, the start of the image file will be offset by addr. If addr is
omitted, the first byte in the file will be the lowest byte initialized. Addr may be
given in decimal, octal or hexadecimal. The default radix is decimal, and suffix
letters of o or O indicate octal, and h or H indicate hex. Thus -B100H will
produce a file in .COM format.

-I Include symbol records in the Intel format hex output. Each symbol record has a

form similar to an object record, but with a different record type. The data bytes
in the record are the symbol name, and the address is the value of the symbol.
This is useful for downloading to ROM debuggers.

-C Read a checksum specification from the standard input. The checksum

specification is described below. Typically the specification will be in a file.

-Estack This option produces an MS-DOS .EXE format file. The optional stack argument

will determine the maximum stack size the program will be allocated on
execution. By default the program will be allocated the maximum stack available,
up to the limit of 64K data. If a stack argument is supplied, the stack size will not
exceed the argument. This is useful to limit the amount of memory a program
will use. The stack argument takes the same form as the argument to -B above.

-8stack This option will produce a CP/M-86 .CMD file. The stack argument is the same

as for the -E option.

80 HI-TECH C – User’s Manual

-Astack This is used when producing a.out format files for unix systems (specifically

Venix-86). If the stack argument is zero, the size of the data segment will be 64k,
otherwise the stack will be placed below the data segment, and its size set to
stack. This must be co-ordinated with appropriate arguments to the -p option of
the linker.

-M This flag will instruct objtohex to produce Motorola 'S' format hex output.

-L This option is used when producing large model programs; the linker will have

been used with the -LM option to retain segment relocation information in the
object file. Use of the -L option to objtohex will cause it to convert that segment
relocation information into appropriate data in the executable file for use when the
program is loaded. Either the operating system or the run-time startup code will
use the relocation data to adjust segment references based on where in memory
the program is actually loaded. If the -L option is followed by a symbol name,
then the relocation information will be stored at the address represented by that
symbol in the output file, e.g. -L__Bbss will cause it to be stored at the base of the
bss psect (__Bbss is defined by the linker to be the load address of the bss psect).
If the special symbol Doshdr is used then the relocation information will be
stored in the .EXE file header. This is only valid in conjunction with the -E
option.

-S The -S option instructs objtohex to write a symbol file. The symbol file name is

given after the -S, e.g. -Sxx.sym.

Unless another format is specifically requested, objtohex will produce a file in Intel hex format.
This is suitable for down-line loading, PROM programming etc. The HP format is useful for
transferring code to an HP64000 for emulation or PROM programming.

The checksum specification allows automated checksum calculation. The checksum
specification takes the form of several lines, each line describing one checksum. The syntax of a
checksum line is:

addr1-addr2 where1-where2 +offset

All of addr1, addr2, where1, where2 and offset are hex numbers, without the usual H suffix.
Such a specification says that the bytes at addr1 through to addr2 inclusive should be summed
and the sum placed in the locations where1 through where2 inclusive. For an 8 bit checksum
these two addresses should be the same. For a checksum stored low byte first, where1 should be
less than where2, and vice versa. The +offset is optional, but if supplied, the value offset will be
used to initialize the checksum. Otherwise it is initialized to zero. For example:

HI-TECH C – User’s Manual 81

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit
checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialized with
1FFFH to provide protection against an all zero rom, or a rom misplaced in memory. A run time
check of this checksum would add the last address of the rom being checksummed into the
checksum. For the rom in question, this should be 1FFFH. The initialization value may,
however, be used in any desired fashion.

82 HI-TECH C – User’s Manual

Use this page for notes

HI-TECH C – User’s Manual 83

16. Cref

The cross reference list utility CREF is used to format raw cross-reference information produced
by the compiler or the assembler into a sorted listing. A raw cross-reference file is produced
with the -CR option to the compiler. The assembler will generate a raw cross-reference file with
a -C option (Z80 or 8086 assemblers) or by using an OPT CRE directive (6800 series
assemblers) or a REF control line (8096 assembler).. The general form of the CREF command
is:

CREF options files

where options is zero or more options as described below and files is one or more raw cross-
reference files. CREF takes the following options:

-Ooutfile Allows specification of the output file name. By default the listing will be written

to the standard output and may be redirected in the usual manner. Alternatively
using the -O option an output file name may be specified, e.g. -Oxxx.lst.

-Pwidth This option allows the specification of the width to which the listing is to be

formatted, e.g. -P132 will format the listing for a 132 column printer. The default
is 80 columns.

-Llength Specify the length of the paper on which the listing is to be produced, e.g. if the

listing is to be printed on 55 line paper you would use a -L55 option. The default
is 66 lines.

-Xprefix The -X option allows the exclusion of symbols from the listing, based on a prefix

given as argument to -X. For example if it was desired to exclude all symbols
starting with the character sequence xyz then the option -Xxyz would be used. If
a digit appears in the character sequence then this will match any digit in the
symbol, e.g. -XX0 would exclude any symbols starting with the letter X followed
by a digit.

-F -F will exclude from the listing any references from files with a full path name. A

full path name means either: a file name starting with a slash ('/') or backslash ('\')
or a file name starting with a CP/M user number/drive letter prefix, e.g. 0:A:.
This is intended to force omission from the listing of any symbol references
derived from standard header files, e.g. using -F would omit any references from
the header file STDIO.H.

84 HI-TECH C – User’s Manual

-Hstring The -H option takes a string as an argument which will be used as a header in the

listing. The default heading is the name of the first raw cross-ref information file
specified.

-Sstoplist The -S option should have as its argument the name of a file containing a list of

symbols not to be listed in the cross-reference. Multiple stoplists may be supplied
with multiple -S options.

Cref will accept wild card filenames and I/O redirection. Long command lines may be supplied
by invoking CREF with no arguments and typing the command line in response to the cref>
prompt. A backslash at the end of the line will be interpreted to mean that more command lines
follow.

HI-TECH C – User’s Manual 85

APPENDIX 1

Error Messages

Error Messages produced by the compiler are listed below. Each message is followed by the
name of the program which produces it, and some further description of what causes the message
or what to do about it.

'.' expected after '..' P1 The ellipsis symbol must have three dots

actuals too long CPP Reduce length of macro arguments

argument list conflicts with prototype P1 The argument list in a function definition

must agree with a prototype if one exists

argument redeclared P1 This argument has been declared twice

arithmetic overflow in constant CGEN Evaluation of this constant expression

expression produced an arithmetic overflow. This may
. or may not represent a true error.

array index out of bounds P1 An array index expression evaluates to a

constant which is less than zero or greater
than or equal to the dimension of the array

Assertion CGEN Internal error - contact HI-TECH

attempt to modify const object P1 An attempt has been made to assign to or

otherwise modify an object designated as
'const'

bad bitfield type P1 Bitfields must be of type 'int'

Bad conval CGEN Internal error - contact HI-TECH

Bad dimensions CGEN An array has bad dimensions - probably zero

Bad element count expr CGEN Internal error - contact HI-TECH

bad formal CPP Check macro defintion syntax

86 HI-TECH C – User’s Manual

bad include syntax CPP Use only "" and <> for include files

Bad int. code CGEN The intermediate code file has been

corrupted - can be caused by running out of
disk space

Bad -M option CGEN A -M option passed to the code generator is

unknown

Bad mod '+' for how = c CGEN Internal error - contact HI-TECH

bad object code format LINK This file is either corrupted or not a valid

object file

Bad op d to swaplog CGEN Internal error - contact HI-TECH

Bad op n to revlog CGEN Internal error - contact HI-TECH

bad origin format in spec LINK An address in a -p option is invalid

bad '-p' format LINK The -p option provided is invalid

Bad pragma c CGEN The code generator has been passed a

pragma it does not know about

Bad putwsize CGEN Internal error - contact HI-TECH

bad storage class P1, CGEN The speficied storage class is illegal

Bad U usage CGEN Internal error - contact HI-TECH

Bit field too large (n bits) CGEN A bit field may not be larger than an int

Cannot get memory LINK The linker has run out of dynamic memory

Can't be both far and near P1 The 'far' and 'near' keywords cannot appear

in the same type specifier

can't be long P1 Chars and shorts cannot be long

can't be register P1 An extern or static variable may not be

register

HI-TECH C – User’s Manual 87

can't be short P1 Float and char cannot be short

can't be unsigned P1 Float cannot be unsigned

can't call an interrupt function P1 A function qualified 'interrupt' can only be

called by hardware, not by an ordinary
function call

Can't create filename CGEN The file specified could not be created

Can't create xref file P1 The cross reference file specified could not

be created

Can't create CPP Output file could not be created

Can't create LINK The linker cannot create a file

Can't find include file CPP Check and correct the include file name -

spaces are not allowed in file names

Can't find register for bits CGEN Internal error - contact HI-TECH

Can't generate code for this CGEN The code generator is unable to generate

expression code for this expression - simplifying the
 expression (e.g. computing values into

temporary variables) will usually correct it,
otherwise contact HI-TECH

can't have array of functions P1 You cannot have an array of functions - you

can have an array of pointers to functions

Can't have 'port' variable CGEN You cannot declare a variable to be qualified

'port' - you can only use port to qualify
pointers or typecast constant values

can't have storage class P1 A storage class may not appear in a

prototype argument

can't initialise auto aggregates P1 You cannot initialise a structure or array

inside a function unless it is static

can't initialize arg P1 An argument cannot have an initializer

can't mix proto and non-proto args P1 You cannot mix prototype and non-

prototype arguments even in a function
definition

88 HI-TECH C – User’s Manual

Can't open filename CGEN The file specified could not be opened for

reading

Can't open LINK The linker cannot open a file

Can't seek LINK The linker could not seek in file

can't take address of register P1 You can't take the address of a variable in a

variable register

can't take sizeof func CGEN You can't take the size of a function. You

can take the size of a function call

can't take this address P1 The expression does not have an address

'case' not in switch P1 A 'case' label is permitted only inside a

switch

char const too long P1 A character constant may have only one

character in it

close error (disk space?) P1 Probably out of disk space

common symbol psect conflict LINK A common symbol is defined to be in more

than one psect

constant conditional branch CGEN You have a program structure testing a

constant expression, e.g. while(1). You
should substitute for this the more efficient
for(;;)

constant expression required P1 A constant expression is required in e.g. an

array dimension

constant operand to || or && CGEN A logical operator has a constant operand

which has been optimized out

declarator too complex P1 This declaration is too complex for the

compiler to handle

default case redefined P1 Only one default case is permitted in a

switch

'default' not in switch P1 A 'default' label is permitted only inside a

switch

digit out of range P1 An octal constant may not contain 7 or 8,

and a decimal constant may not contain A-F

HI-TECH C – User’s Manual 89

dimension required P1 A dimension is required for all except the

most significant in an array declaration

Division by zero CGEN Attempt to divide by zero in this expression

Duplicate case label n CGEN There are two case labels in this switch that

have the same value

Duplicate -d flag LINK Only one -d flag is allowed to the linker

duplicate label P1 This label is defined twice

Duplicate -m flag LINK Only one -m flag is allowed to the linker

duplicate qualifier P1 The same qualifier appears more than once

in this type specifier

entry point multiply defined LINK A program can only have one entry point

(start address)

EOF in #asm P1 End of file was encounterd after #asm and

before a #endasm was seen

Error closing output file CGEN,CPP Probably means you have run out of disk

space

excessive -I file ignored CPP Use fewer -I options

expand - bad how CGEN Internal error - contact HI-TECH

expand - bad which CGEN Internal error - contact HI-TECH

exponent expected P1 An exponent is expected after the 'e' or 'E' in

a floating point constant. The exponent must
contain only +, - and digits 0-9

Expression error CGEN Internal error - contact HI-TECH

expression generates no code CGEN This expression has no side effects and thus

generates no code. It has been optimized out

expression syntax P1 The expression is badly formed

90 HI-TECH C – User’s Manual

expression too complex P1 The expression has too many nested

parantheses or other nested constructs

Fixup overflow referencing LINK The linker has relocated a reference to a

psect or symbol and the relocated address is
too big to fit into the space, e.g. a relocated
one byte address exceeds 256 or a relocated
16 bit address exceeds 65536

float param coerced to double P1 This float parameter has been converted to

double - a prototype will override this
coercion

function() declared implicit int P1 This function has been called without an

explicit declaration. It is wise to explicitly
declare all functions, preferably with a
prototype. This will avoid many potential
errors where your program comprises more
than one source file

function does not take arguments P1 The prototype for this function indicates it

takes no arguments

function or function pointer P1 A function identifier or pointer to function is

required required for a function call.

functions can't return arrays P1 A function cannot return an array - it can

return a pointer

functions can't return functions P1 A function cannot return a function - it can

return a pointer to function

hex digit expected P1 A hex digit is expected after '0x'

identifier is a structure tag P1 A structure tag has been used in a context

where another kind of tag is expected, e.g.
saying struct fred where fred has previously
been declared as union fred.

identifier is a union tag P1 Similar to the above error

identifier is an enum tag P1 Similar to the above error

identifier: large offset CGEN Z80 only: This identifier has a large offset

from the stack frame and thus access to it is
inefficient. In a function any arrays should
be declared after any simple variables

HI-TECH C – User’s Manual 91

identifier redeclared P1 The identifier has been redeclared with

different attributes

identifier redefined P1 An identifier has been defined twice

If-less else CPP Check #if usage

If-less endif CPP Check #if usage

illegal '#' directive P1 A # directive passed through to the first pass

is unknown. If this occurs with a #include it
may be caused by a previous include file not
having a <CR><LF> or newline on the last
line.

Illegal character in preprocessor if CPP Check for strange character

illegal character P1 A character unknown to the compiler has

been encountered. The value given is the
octal value of the character

illegal conversion between pointer P1 The expression causes one pointer type to be

types converted to another incompatible type

illegal conversion of integer to P1 An integer is used where a pointer is

pointer expected

illegal conversion of pointer to P1 A pointer is used where an integer is

integer expected

illegal conversion P1 The type conversion here is illegal

Illegal flag LINK This option is illegal

illegal function qualifier(s) P1 A function cannot have 'const' qualification

illegal initialization P1 The initialisation of this variable is illegal

Illegal number CPP Check number syntax

illegal type for array dimension P1 An array dimension must be an integral

quantity

illegal type for index expression P1 An array index must be a simple integral

expression

92 HI-TECH C – User’s Manual

illegal type for switch expression P1 The expression in a 'switch' must be integral

illegal use of void expression P1 Void expressions may not be used in any

way

implicit conversion of float to P1 A floating point value has been converted to

integer integer - truncation may occur

implicit return at end of non-void P1 A function with a non-void type has

function returned without a return statement

implict signed to unsigned P1 Unwanted sign extension may occur here.

conversion Add an explicit typecast to force exactly the
 conversion you want

inappropriate break/continue P1

inappropriate 'else' P1 An 'else' has appeared without a matching

'if'

inconsistent storage class P1 Only one storage class may be specified in a

declaration

inconsistent type P1 Only one basic type may be specified in a

declaration

initialisation illegal in arg list P1 You cannot initialise a function parameter

initialisation syntax P1 The syntax of this initialisation is illegal

initializer in 'extern' declaration P1 A declaration with the 'extern' keyword has

an initializer; this is not permitted as the
extern declaration reserves no storage

integer constant expected P1 An integer constant was expected here

integer expression required P1 An integral expression is required here

integral type required P1 An integral type is required here

large offset CGEN Z80 only: This identifier has a large offset from the

stack frame and thus access to it is
inefficient. In a function any arrays should
be declared after any simple variables

HI-TECH C – User’s Manual 93

Line too long P1 The source line is too long, or does not have

a <CR><LF> or newline at the end

local psect conflicts with global LINK A local psect cannot have the same ..name

psect of same name as a global psect

logical type required P1 A logical type (i.e. an integral type) is

required as the subject of a conditional
expression

lvalue required P1 An lvalue, i.e. something which can be

assigned to, is required after an '&' or on the
left hand of an assignment

macro recursion CPP A preprocessor macro has attempted to

expand itself. This would create infinite
recursion

member is not a member of the P1 This member is not in the structure or union

struct/union with which it is used

members cannot be functions P1 A member cannot be a function - it can be a

pointer to function

Missing arg to –u LINK -u requires an argument

Missing arg to –w LINK -w requires an argument

missing) CPP Put correct) in expression

Missing number after % in -p option LINK After % in a -p option there must be a

number

Missing number after pragma 'pack' P1 The correct syntax is #pragma pack(n)

where n is 1, 2 or 4.

module has code below file base LINK A -C option was specified but the program

has code below the address specified as the
base of the binary file

multiply defined symbol LINK A symbol is defined more than once

name is a union, struct or enum P1 A union, struct or enum tag has been re-used

in a different context

94 HI-TECH C – User’s Manual

No case labels CGEN This switch has no case labels

no identifier in declaration P1 This declaration should have an identifier in

it

No room CGEN The code generator has run out of dynamic

memory. You will need to reduce the
number of symbols and/or the complexity of
expressions

No source file CPP Source file could not be found - check

spelling, directory paths etc.

no space CPP Reduce number/size of macro definitions

no start record: entry point LINK No start address has been specified for the

defaults to zero program; the linker has set the start address
 to 0

Non-constant case label CGEN This case label does not evaluate to an

integral constant

non-void function returns no value P1 A function which should return a value has a

'return' statement with no value

not a variable identifier P1 The identifier is not a variable - it may be

e.g. a label or structure tag

not an argument P1 This identifier is not in the argument list for

this function

only functions may be qualified P1 The type qualifier 'interrupt' may be applied

interrupt only to functions, not variables.

only functions may be void P1 Only functions, not variables, may be

declared void

only lvalues may be assigned to P1 You have attempted to modify an expression

or modified which does not identify a storage location

only register storage class allowed P1 A parameter may only be auto or register

operands of operator not same P1 The operands to the named operator in the

pointer type expression are both pointers but are not the
 same pointer type

HI-TECH C – User’s Manual 95

operands of operator not same type P1 The operands to the named operator in the

expression are incompatible types

pointer required P1 A pointer is required after a '*' (indirection)

operator

popreg - bad reg CGEN Internal error - contact HI-TECH

portion of expression has no effect CGEN A portion of this expression has no effect on

its value and no side effects

probable missing '}' in previous block P1 A declaration has been encountered where

an expression was expected. The likely
cause of this is that you have omitted a
closing '}' in the function above this point.

psect cannot be in classes a and b LINK A psect can only be in one class

psect exceeds max size LINK This psect is larger than a specified

maximum size

psect is absolute LINK This psect is absolute and cannot have a link

address specified in a -p option

Psect not loaded on 0xhexnum LINK This psect must be loaded on a specific

boundary boundary

Psect not relocated on 0xhexnum LINK This psect must be linked on a specific

boundary boundary

psect origin multiply defined LINK This psect has its link address defined more

than once

pushreg - bad reg CGEN Internal error - contact HI-TECH

redundant & applied to array P1 An array type has an '&' operator applied to

it. It has been ignored since use of an array
implicitly gives its address

regused - bad arg to G CGEN Internal error - contact HI-TECH

signatures do not match LINK An extern function has been declared with

an incorrect prototype. For example if an
argument is declared as a long in an extern
declaration, but is really an int, a signature
mismatch will occur.

96 HI-TECH C – User’s Manual

signed bitfields not supported P1 Only unsigned bitfields are supported

simple type required P1 An array or structure type cannot be used

here

Sizeof yields 0 CGEN The size of an object has evaluated to zero

in a context where this is illegal, e.g.
incrementing a pointer to a zero length
object.

storage class illegal P1 A storage class may not be specified here

struct/union member expected P1 A structure or union member is required

after a '. or '->'

struct/union redefined P1 This structure or union has been defined

twice

struct/union required P1 A structure or union identifier is required

before a '.'

Switch on long! CGEN Switching on a long expression is not

supported

symbol cannot be global LINK Stack, filename or line number symbols

cannot be global

Syntax error in checksum list LINK The checksum list provided is invalid

token too long CPP Shorten token (e.g. identifier)

too few arguments P1 The protype for this function lists more

arguments than have been supplied

too many arguments P1 More arguments have been supplied than

listed in the prototype for this function

Too many cases in switch CGEN, P1 There are too many cases in this switch

too many -D options CPP Use fewer -D options

too many defines CPP Reduce number of macro definitions

Too many errors CGEN CGEN has given up because there were too

many errors.

HI-TECH C – User’s Manual 97

too many formals CPP Reduce number of parameters to this macro

definition

Too many initializers CGEN There are too many initializers for this

object

Too many psects LINK There are too many psects for the symbol

table

Too many symbols LINK There are too many symbols for the linker

symbol table

too many -U options CPP Use fewer -U options

too much defining CPP Reduce number/size of macros

too much indirection P1 Too many '*'s in this declaration

too much pushback CPP Simplify macro usage

type conflict P1 There is a conflict of types in this

expression, e.g. attempting to assign a
structure to a simple type

type specifier reqd. for proto arg P1 A prototype argument must have a basic

type

undefined control CPP Check use of #

undefined enum tag P1 This enumerated type tag has not been

defined

undefined identifier P1 This identifier has not been defined before

use

undefined struct/union P1 The structure or union used has not been

defined

undefined symbol LINK A list of undefined symbols follows. If

some of the symbols should be in a library
which was linked, it may be caused by a
library ordering problem. In this case
rebuild the library with the correct ordering
or specify the library more than once in the
link command

unexpected EOF P1 End of file was encountered in the middle of

a C construct. This is commonly caused by
omission of a closing '}' earlier in the
program.

98 HI-TECH C – User’s Manual

Unknown predicate CGEN Internal error - contact HI-TECH

unknown psect LINK The psect specifed in a -p option is not

present in the program. Check the spelling
and check the case - upper case does not
match lower case

unreachable code P1 This section of code can never be executed

as there is no possible path to reach it

Unreasonable include nesting CPP Reduce number of include files

Unreasonable matching depth CGEN Internal error - contact HI-TECH

unterminated macro call CPP Probably missing)

void function cannot return value P1 A function declared void cannot return a

value

Write error (out of disk space?) LINK Probably means the disk is full

HI-TECH C – User’s Manual 99

APPENDIX 2

Standard Library Functions

The functions accessible to user programs in the standard library libc.lib are listed below, by
category with a short comment, then alphabetically with a longer description. In the detailed
description of each function, the SYNOPSIS section describes the function in roughly the
manner in which the function would be declared in the source file defining it. Where an include
file is shown, this implies that that include file must be included in any source file using that
function.

Where an include file is not provided, it will normally be necessary for an extern declaration of
the function to be included in any source module using it, to ensure that the type of the function
is correct. For example, if the function lseek() was to be used, a declaration of the form

extern long lseek();

should be in either the source file itself or an include file included in the source file. This
ensures that the compiler knows that lseek() returns a long value and not the default int.

Where reference is made to STDIO, this means the group of functions under the heading
STANDARD I/O below. These all have one thing in common; they operate on pointers to a
defined data type called FILE. Such a pointer is often referred to as a stream pointer. The
concept of a stream is central to these routines. Essentially a stream is a source or sink of data
bytes. To the operating system and library routines this stream is featureless, i.e. no record
structure is implied or assumed. Some routines do however recognize end of line characters.

STANDARD I/O

fopen(name, mode) Open file for I/O
freopen(name, mode, stream) Re-open existing stream
fdopen(fd, mode) Associate a stream with a file descriptor
fclose(stream) Close open file
fflush(stream) Flush buffered data
getc(stream) Read byte from stream
fgetc(stream) Same as getc
ungetc(c, stream) Push char back onto stream
putc(c, stream) Write byte to stream
fputc(c, stream) Same as putc()
getchar() Read byte from standard input
putchar(c) Write byte to standard output
getw(stream) Read word from stream

100 HI-TECH C – User’s Manual

putw(w, stream) Write word to stream
gets(s) Read line from standard input
fgets(s, n, stream) Read string from stream
puts(s) Write string to standard output
fputs(s, stream) Write string to stream
fread(buf, size, cnt, stream) Binary read from stream
fwrite(buf, size, cnt, stream) Binary write to stream
fseek(stream, offs, wh) Random access positioning
ftell(stream) Current file read/write position
rewind(stream) Reposition file pointer to start
setvbuf(stream, buf, mode, size) Enable/disable buffering of stream
fprintf(stream, fmt, args) Formatted output on stream
printf(fmt, args) Formatted standard output
sprintf(buf, fmt, args) Formatted output to a string
vfprintf(stream, fmt, va_ptr) Formatted output on stream
vprintf(fmt, va_ptr) Formatted standard output
vsprintf(buf, fmt, va_ptr) Formatted output to a string
fscanf(stream, fmt, args) Formatted input from stream
scanf(fmt, args) Formatted standard input
sscanf(buf, fmt, va_ptr) Formatted input from a string
vfscanf(stream, fmt, va_ptr) Formatted input from stream
vscanf(fmt, args) Formatted standard input
vsscanf(buf, fmt, va_ptr) Formatted input from a string
feof(stream) True if stream at EOF
ferror(stream) True if error on stream
clrerr(stream) Reset error status on stream
fileno(stream) Return fd from stream
remove(name) Remove (delete) file

STRING HANDLING

atoi(s) Convert ASCII decimal to integer
atol(s) Convert ASCII decimal to long integer
atof(s) Convert ASCII decimal to float
xtoi(s) Convert ASCII hexadecimal to integer
memchr(s, c, n) Find char in memory block
memcmp(s1, s2, n) Compare n bytes of memory
memcpy(s1, s2, n) Copy n bytes from s2 to s1
memmove(s1, s2, n) Copy n bytes from s2 to s1
memset(s, c, n) Set n bytes at s to c
strcat(s1, s2) Append string 2 to string 1
strncat(s1, s2, n) Append at most n chars to string 1
strcmp(s1, s2) Compare strings
strncmp(s1, s2, n) Compare n bytes of strings
strcpy(s1, s2) Copy s2 to s1
strncpy(s1, s2, n) Copy at most n bytes of s2
strerror(errnum) Map errnum to an error message string
strlen(s) Length of string

HI-TECH C – User’s Manual 101

strchr(s, c) Find char in string
strrchr(s, c) Find rightmost char in string
strspn(s1, s2) Length of s1 composed of chars from s2
strcspn(s1, s2) Length of s2 composed of chars not from s2
strstr(s1, s2) Locate the first occurence of s2 in s1
open(name, mode) Open a file
close(fd) Close a file
creat(name) Create a file
dup(fd) Duplicate file descriptor
lseek(fd, offs, wh) Random access positioning
read(fd, buf, cnt) Read from file
rename(name1, name2) Rename file
unlink(name) Remove file from directory
write(fd, buf, cnt) Write to file
isatty(fd) True if fd refers to tty-like device
stat(name, buf) Get information about a file
chmod(name, mode) Set file attributes

CHARACTER TESTING

isalpha(c) True if c is a letter
 isupper(c) Upper case letter
islower(c) Lower case letter
isdigit(c) Digit
isalnum(c) Alphnumeric character
isspace(c) Space, tab, newline, return or formfeed
ispunct(c) Punctuation character
isprint(c) Printable character
isgraph(c) Printable non-space character
iscntrl(c) Control character
isascii(c) Ascii character (0-127)

FLOATING POINT

cos(f) Cosine function
sin(f) Sine function
tan(f) Tangent function
acos(f) Arc cosine function
asin(f) Arc sine function
atan(f) Arc tangent function
exp(f) Exponential of f
log(f) Natural log of f
log10(f) Base 10 log of f
pow(x,y) X to the y'th power
sqrt(f) Square root
fabs(f) Floating absolute value
ceil(f) Smallest integral value >= f
floor(f) Largest integral value <= f

102 HI-TECH C – User’s Manual

sinh(f) Hyperbolic sine
cosh(f) Hyperbolic cosine
tanh(f) Hyperbolic tangent
frexp(y, p) Split into mantissa and exponent
ldexp(y, I) Load new exponent

CONSOLE I/O

getch() Get single character
getche() Get single character with echo
putch(c) Put single character
ungetch(c) Push character back
kbhit() Test for key pressed
cgets(s) Get line from console
cputs(s) Put string to console

DATE AND TIME FUNCTIONS

time(p) Get current date/time
gmtime(p) Get broken down Universal time
localtime(p) Get broken down local time
asctime(t) Convert broken down time to ascii
ctime(p) Convert time to ascii

MISCELLANEOUS

execl(name, args) Execute another program
execv(name, argp) Execute another program
spawnl(name, arg, ...) Execute a subprogram
spawnv(name, argp) Execute a subprogram
system(s) Execute system command
atexit(func) Install func to be executed on termination
exit(status) Terminate execution
_exit(status) Terminate execution immediately
getuid() Get user id (CP/M)
setuid(uid) Set user id (CP/M)
chdir(s) Change directory (MS-DOS)
mkdir(s) Create directory (MS-DOS)
rmdir(s) Remove directory (MS-DOS)
getcwd(drive) Get current working directory (MS-DOS)
signal(sig, func) Set trap for interrupt condition
brk(addr) Set memory allocation
sbrk(incr) Adjust memory allocation
malloc(cnt) Dynamic memory allocation
free(ptr) Dynamic memory release
realloc(ptr, cnt) Dynamic memory reallocation
calloc(cnt, size) Dynamic memory allocation zeroed

HI-TECH C – User’s Manual 103

perror(s) Print error message
qsort(base, nel, width, func) Quick sort
srand(seed) Initialize random number generator
rand() Get next random number
setjmp(buf) Setup for non-local goto
longjmp(buf, val) Non-local goto
_getargs(buf, name) Wild card expansion and i/o redirection
inp(port) Read port
outp(port, data) Write data to port
bdos(func, val) Perform bdos call (CP/M)
msdos(func, val, val, ...) Perform msdos call
msdoscx(func, val, val, ...) Alternate msdos call
intdos(ip, op) Execute DOS interrupt
intdosx(ip, op, sp) Execute DOS interrupt
segread(sp) Get segment register values
int86(int, ip, op) Execute software interrupt
int86x(int, ip, op, sp) Execute software interrupt
bios(n, c) Call bios entry (CP/M)
ei() Enable interrupts
di() Disable interrupts
set_vector(vec, func) Set an interrupt vector
assert(e) Run time assertion
getenv(s) Get environment string (MS-DOS)

ACOS, ASIN, ATAN, ATAN2
SYNOPSIS

#include <math.h>

double acos(double f)
double asin(double f)
double atan(double f)
double atan2(double x, double y)

DESCRIPTION: These functions are the converse of the trignometric functions cos, sin and
tan. Acos and asin are undefined for arguments whose absolute value is greater than 1.0. The
returned value is in radians, and always in the range -pi/2 to +pi/2, except for cos(), which
returns a value in the range 0 to pi. Atan2() returns the inverse tan of x/y but uses the signs of its
arguments to return a value in the range -pi to +pi.

SEE ALSO

sin, cos, tan

104 HI-TECH C – User’s Manual

ATEXIT
SYNOPSIS

#include <stdlib.h>

int atexit(void (*func)(void));

DESCRIPTION The atexit() function registers the function pointed to by func, to be called
without arguments at normal program termination. Ateixt() returns zero if the registration
succeeds, nonzero if it fails. On program termination, all functions registered by atexit() are
called, in the reverse order of their registration.

SEE ALSO

exit

ASCTIME SYNOPSIS

#include <time.h>

char * asctime(time_t t)

DESCRIPTION Asctime() takes the broken down time pointed to by its argument, and returns a
26 character string describing the current date and time in the format

Sun Sep 16 01:03:52 1973\n\0

Note the newline at the end of the string. The width of each field in the string is fixed.

SEE ALSO

ctime, time, gmtime, localtime

HI-TECH C – User’s Manual 105

ASSERT
SYNOPSIS

#include <assert.h>

void assert(int e)

DESCRIPTION: This macro is used for debugging purposes; the basic method of usage is to
place assertions liberally throughout your code at points where correct operation of the code
depends upon certain conditions being true initially. An assert() may be used to ensure at run
time that that assumption holds. For example, the following statement asserts that the pointer tp
is nonnull:

assert(tp);

If at run time the expression evaluates to false, the program will abort with a message identifying
the source file and line number of the assertion, and the expression used as an argument to it. A
fuller discussion of the uses of assert is impossible in limited space, but it is closely linked to
methods of proving program correctness.

ATOF, ATOI, ATOL
SYNOPSIS

#include <math.h>

double atof(char * s)
int atoi(char * s)

#include <stdlib.h>

long atol(char * s)

DESCRIPTION: These routines convert a decimal number in the argument string s into a double
float, integer or long integer respectively. Leading blanks are skipped over. In the case of atof(),
the number may be in scientific notation.

106 HI-TECH C – User’s Manual

BDOS (CP/M only)
SYNOPSIS

#include <cpm.h>

char bdos(int func, int arg)

short bdoshl(int func, int arg)(CP/M-80 only)

DESCRIPTION: Bdos() calls the CP/M BDOS with func in register C (CL for CP/M-86) and
arg in register DE (DX). The return value is the byte returned by the BDOS in register A (AX).
Bdoshl() is the same, except that the return value is the value returned by the BDOS in HL.
Constant values for the various BDOS function values are defined in cpm.h.

These functions should be avoided except in programs which are not intended to be used on an
operating system other than CP/M. The standard I/O routines are to be preferred, since they are
portable.

SEE ALSO

bios, msdos

BIOS (CP/M only)
SYNOPSIS

#includ <cpm.h>

char bios(int n, int a1, int a2)

DESCRIPTION: This function will call the n'th bios entry point (cold boot = 0, warm boot = 1,
etc.) with register BC (CX) set to the argument a1 and DE (DX) set to the argument a2. The
return value is the contents of register A (AX) after the bios call. On CP/M-86, bdos function 50
is used to perform the bios call. This function should not be used unless unavoidable, since it is
highly non-portable. There is even no guarantee of portability of bios calls between differing
CP/M systems.

SEE ALSO

bdos

HI-TECH C – User’s Manual 107

CALLOC
SYNOPSIS

#include <stdlib.h>

char * calloc(size_t cnt, size_t size)

 DESCRIPTION: Calloc() attempts to obtain a contiguous block of dynamic memory which will
hold cnt objects, each of length size. The block is filled with zeroes. A pointer to the block is
returned, or 0 if the memory could not be allocated.

SEE ALSO

brk, sbrk, malloc, free

CGETS, CPUTS SYNOPSIS

#include <conio.h>

char * cgets(char * s)

void cputs(char * s)

DESCRIPTION: Cputs() will read one line of input from the console into the buffer passed as
an argument. It does so by repeated calls to getche(). Cputs() writes its argument string to the
console, outputting carriage returns before each newline in the string. It calls putch() repeatedly.

SEE ALSO

getch, getche, putch

108 HI-TECH C – User’s Manual

CHDIR
SYNOPSIS

#include <sys.h>

int chdir(char * s)

DESCRIPTION: This function is availble only under MS-DOS. It changes the current working
directory to the path name supplied as argument. This path name be be absolute, as in A:\FRED,
or relative, as in ..\SOURCES. A return value of -1 indicates that the requested change could not
be performed.

SEE ALSO

mkdir, rmdir, getcwd

CHMOD
SYNOPSIS

#include <stat.h>

int chmod(char * name, int)
char * name; int mode;

DESCRIPTION: This function changes the file attributes (or modes) of the named file. The
argument name may be any valid file name. The mode argument may include all bits defined in
stat.h except those relating to the type of the file, e.g. S_IFDIR. Note however that not all bits
may be changed under all operating systems, e.g. neither DOS nor CP/M permit a file to be made
unreadable, thus even if mode does not include S_IREAD the file will still be readable (and
stat() will still return S_IREAD in flags).

SEE ALSO

stat, creat

HI-TECH C – User’s Manual 109

CLOSE
SYNOPSIS

#include <unixio.h>

int close(int fd)

DESCRIPTION: This routine closes the file associated with the file descriptor fd, which will
have been previously obtained from a call to open(). Close() returns 0 for a successful close, or -
1 otherwise.

SEE ALSO

open, read, write, seek

CLRERR, CLREOF
SYNOPSIS

#include <stdio.h>
void clrerr(FILE * stream)
void clreof(FILE * stream)

DESCRIPTION: These are macros, defined in stdio.h, which reset the error and end of file flags
respectively for the specified stream. They should be used with care; the major valid use is for
clearing an EOF status on input from a terminal-like device, where it may be valid to continue to
read after having seen an end-of-file indication.

SEE ALSO

fopen, fclose

110 HI-TECH C – User’s Manual

COS SYNOPSIS

#include <math.h>

double cos(double f)

DESCRIPTION: This function yields the cosine of its argument.

SEE ALSO

sin, tan, asin, acos, atan

COSH, SINH, TANH
SYNOPSIS

#include <math.h>

double cosh(double f)
double sinh(double f)
double tanh(double f)

DESCRIPTION: These functions implement the hyperbolic trig functions.

HI-TECH C – User’s Manual 111

CREAT
SYNOPSIS

#include <stat.h>

int creat(char * name, int mode)

DESCRIPTION: This routine attempts to create the file named by name. If the file exists and is
writeable, it will be removed and re-created. The return value is -1 if the create failed, or a small
non-negative number if it succeeded. This number is a valuable token which must be used to
write to or close the file subsequently. Mode is used to initialize the attributes of the created file.
The allowable bits are the same as for chmod(), but for Unix compatibility it is recommended
that a mode of 0666 or 0600 be used. Under CP/M the mode is ignored - the only way to set a
files attributes is via the chmod() function.

SEE ALSO

open, close, read, write, seek, stat, chmod

CTIME
SYNOPSIS

#include <time.h>

char * ctime(time_t t)

DESCRIPTION: Ctime() converts the time in seconds pointed to by its argument to a string of
the same form as described for asctime. Thus the following program prints the current time and
date:

 #include <time.h>

main()
{

time_t t;

time(&t);
printf("%s", ctime(&t));

}
SEE ALSO

gmtime, localtime, asctime, time

112 HI-TECH C – User’s Manual

DIV, LDIV
SYNOPSIS

#include <stdlib.h>

div_t div(int numer, int denom)
ldiv_t div(long numer, long denom)

DESCRIPTION: The div() function computes the quotient and remainder of the divison of
numer by denom. The div() function returns a structure of type div_t, containing both the
quotient and remainder. ldiv() is similar to div() except it takes arguments of type long and
returns a structure of type ldiv_t. The types div_t and ldiv_t are defined in <stdlib.h> as follows:

typedef struct {
intquot, rem;

} div_t;

typedef struct {

longquot, rem;
} ldiv_t;

HI-TECH C – User’s Manual 113

DI, EI
SYNOPSIS

void ei(void);
void di(void);

DESCRIPTION: Ei() and di() enable and disable interrupts respectivly.

DUP
SYNOPSIS

#include <unixio.h>

int dup(int fd)

DESCRIPTION: Given a file descriptor, such as returned by open(), this routine will return
another file descriptor which will refer to the same open file. -1 is returned if the fd argument is
a bad descriptor or does not refer to an open file.

SEE ALSO

open, close, creat, read, write

114 HI-TECH C – User’s Manual

EXECL, EXECV
SYNOPSIS

#include <sys.h>

int execl(char * name, pname, ...)
int execv(char * name, ppname)

DESCRIPTION: Execl() and execv() load and execute the program specified by the string
name. Execl() takes the arguments for the program from the zero-terminated list of string
arguments. Execv() is passed a pointer to an array of strings. The array must be zero-
terminated. If the named program is found and can be read, the call does not return. Thus any
return from these routines may be treated as an error.

SEE ALSO

spawnl, spawnv, system

EXIT
SYNOPSIS

#include <stdlib.h>

void exit(int status)

DESCRIPTION: This call will close all open files and exit from the program. On CP/M, this
means a return to CCP level. Status will be stored in a known place for examination by other
programs. This is only useful if the program executing was actually invoked by another program
which is trapping warm boots. The status value will be stored on CP/M at 80H. This call will
never return.

SEE ALSO

atexit

HI-TECH C – User’s Manual 115

_EXIT
SYNOPSIS

#include <stdlib.h>
void _exit(int status)

DESCRIPTION: This function will cause an immediate exit from the program, without the
normal flushing of stdio buffers that is performed by exit().

SEE ALSO

exit

EXP, LOG, LOG10, POW
SYNOPSIS

#include <math.h>

double exp(double f)
double log(double f)
double log10(double f)
double pow(double x, y)

DESCRIPTION: Exp() returns the exponential function of its argument, log() the natural
logarithm of f, and log10() the logarithm to base 10. Pow() returns the value of x raised to the
y'th power.

116 HI-TECH C – User’s Manual

FABS, CEIL, FLOOR
SYNOPSIS

#include <math.h>

double fabs(double f)
double ceil(double f)
double floor(double f)

DESCRIPTION: These routines return respectively the absolute value of f, the smallest integral
value not less than f, and the largest integral value not greater than f.

FCLOSE
SYNOPSIS

#include <stdio.h>

int fclose(FILE * stream)

DESCRIPTION: This routine closes the specified i/o stream. Stream should be a token returned
by a previous call to fopen(). NULL is returned on a successful close, EOF otherwise.

SEE ALSO

fopen, fread, fwrite

HI-TECH C – User’s Manual 117

FEOF, FERROR
SYNOPSIS

#include <stdio.h>

feof(FILE * stream)
ferror(FILE * stream)

DESCRIPTION: These macros test the status of the EOF and ERROR bits respectively for the
specified stream. Each will be true if the corresponding flag is set. The macros are defined in
stdio.h. Stream must be a token returned by a previous fopen() call.

SEE ALSO

fopen, fclose

FFLUSH
SYNOPSIS

#include <stdio.h>

int fflush(FILE * stream)

DESCRIPTION: Fflush() will output to the disk file or other device currently open on the
specified stream the contents of the associated buffer. This is typically used for flushing
buffered standard output in interactive applications.

SEE ALSO

fopen, fclose

118 HI-TECH C – User’s Manual

FGETC
SYNOPSIS

#include <stdio.h>

int fgetc(FILE * stream)

DESCRIPTION: Fgetc() returns the next character from the input stream. If end-of-file is
encountered EOF will be returned instead. It is for this reason that the function is declared as int.
The integer EOF is not a valid byte, thus end-of-file is distinguishable from reading a byte of all
1 bits from the file. Fgetc() is the non-macro version of getc().

SEE ALSO

fopen, fclose, fputc, getc, putc

FGETS
SYNOPSIS

#include <stdio.h>

char * fgets(char * s, size_t n, char * stream)

DESCRIPTION: Fgets() places in the buffer s up to n-1 characters from the input stream. If a
newline is seen in the input before the correct number of characters is read, then fgets() will
return immediately. The newline will be left in the buffer. The buffer will be null terminated in
any case. A successful fgets() will return its first argument; NULL is returned on end-of-file or
error.

HI-TECH C – User’s Manual 119

FILENO
SYNOPSIS

fileno(FILE * stream)

DESCRIPTION: Fileno() is a macro from stdio.h which yields the file descriptor associated
with stream. It is mainly used when it is desired to perform some low-level operation on a file
opened as a stdio stream.

SEE ALSO

fopen, fclose, open, close

FOPEN
SYNOPSIS

#include <stdio.h>

FILE * fopen(char * name, char * mode);

DESCRIPTION: Fopen() attempts to open file for reading or writing (or both) according to the
mode string supplied. The mode string is interpreted as follows:

r The file is opend for reading if it exists. If the file does not exist the call fails.

r+ If the file exists it is opened for reading and writing. If the file does not already exist the

call fails.

W The file is created if it does not exist, or truncated if it does. It is then opened for writing.

w+ The file is created if it does not already exist, or truncated if it does. The file is opened

for reading and writing.

a The file is created if it does not already exist, and opened for writing. All writes will be

dynamically forced to the end of file, thus this mode is known as append mode.

a+ The file is created if it does not already exist, and opened for reading and writing. All

writes to the file will be dynamically forced to the end of the file, i.e. while any portion of
the file may be read, all writes will take place at the end of the file and will not overwrite
any existing data. Calling fseek() in an attempt to write at any other place in the file will
not be effective.

120 HI-TECH C – User’s Manual

The "b" modifier may be appended to any of the above modes, e.g. "r+b" or "rb+" are equivalent.
Adding the "b" modifier will cause the file to be opened in binary rather than ASCII mode.
Opening in ASCII mode ensures that text files are read in a manner compatible with the Unix-
derived conventions for C programs, i.e. that text files contain lines delimited by newline
characters. The special treatment of read or written characters varies with the operating system,
but includes some or all of the following:

NEWLINE (LINE FEED) Converted to carriage return, line feed on output.

RETURN Ignored on input, inserted before NEWLINE on output.

CTRL-Z Signals EOF on input, appended on fclose on output if necessary

on CP/M.

Opening a file in binary mode will allow each character to be read
just as written, but because the exact size of a file is not known to
CP/M, the file may contain more bytes than were written to it. See
open() for a description of what constitutes a file name.

When using one of the read/write modes (with a '+' character in the string), although they permits
reading and writing on the same stream, it is not possible to arbitrarily mix input and output calls
to the same stream. At any given time a stream opened with a "+" mode will be in either an
input or output state. The state may only be changed when the associated buffer is empty, which
is only guaranteed immediately after a call to fflush() or one of the file positioning functions
fseek() or rewind(). The buffer will also be empty after encountering EOF while reading a
binary stream, but it is recommended that an explicit call to fflush() be used to ensure this
situation. Thus after reading from a stream you should call fflush() or fseek() before attempting
to write on that stream, and vice versa.

SEE ALSO

fclose, fgetc, fputc, freopen

HI-TECH C – User’s Manual 121

FPRINTF
SYNOPSIS

#include <stdio.h>

fprintf(FILE * stream, char * fmt, ...);
vfprintf(FILE * stream, va_list va_arg);

DESCRIPTION: Fprintf() performs formatted printing on the specified stream. Refer to
printf() for the details of the available formats. Vfprintf() is similar to fprintf() but takes a
variable argument list pointer rather than a list of arguments. See the description of vastart() for
more information on variable argument lists.

SEE ALSO

printf, fscanf, sscanf

FPUTC
SYNOPSIS

#include <stdio.h>

int fputc(int c, FILE * stream)

DESCRIPTION: The character c is written to the supplied stream. This is the non-macro
version of putc(). The character is returned if it was successfully written, EOF is returned
otherwise. Note that "written to the stream" may mean only placing the character in the buffer
associated with the stream.

SEE ALSO

putc, fgetc, fopen, fflush

122 HI-TECH C – User’s Manual

FPUTS
SYNOPSIS

#include <stdio.h>

int fputs(char * s, FILE * stream)

DESCRIPTION: The null-terminated string s is written to the stream. No newline is appended
(cf. puts()). The error return is EOF.

SEE ALSO

puts, fgets, fopen, fclose

FREAD
SYNOPSIS

#include <stdio.h>

int fread(void * buf, size_t size, size_t cnt, FILE * stream)

DESCRIPTION: Up to cnt objects, each of length size, are read into memory at buf from the
stream. The return value is the number of objects read. If none is read, 0 will be returned. Note
that a return value less than cnt, but greater than 0, may not represent an error (cf. fwrite()). No
word alignment in the stream is assumed or necessary. The read is done via successive getc()'s.

SEE ALSO

fwrite, fopen, fclose, getc

HI-TECH C – User’s Manual 123

FREE
SYNOPSIS

#include <stdlib.h>

void free(void * ptr)

DESCRIPTION: Free() deallocates the block of memory at ptr, which must have been obtained
from a call to malloc() or calloc().

SEE ALSO

malloc, calloc

FREOPEN
SYNOPSIS

#include <stdio.h>

FILE * freopen(char * name, char * mode, FILE * stream)

DESCRIPTION: Freopen() closes the given stream (if open) then reopens the stream attached
to the file described by name. The mode of opening is given by mode. It either returns the
stream argument, if successful, or NULL if not. See fopen() for more information.

SEE ALSO

fopen, fclose

124 HI-TECH C – User’s Manual

FREXP, LDEXP
SYNOPSIS

#include <math.h>

double frexp(double f, int * p)
double ldexp(double f, int i)

DESCRIPTION: Frexp() breaks a floating point number into a normalized fraction and an
integral power of 2. The integer is stored into the int object pointed to by p. Its return value x is
in the interval [0.5, 1.0) or zero, and f equals x times 2 raised to the power stored in *p. If f is
zero, both parts of the result are zero. Ldexp() performs the reverse operation; the integer i is
added to the exponent of the floating point f and the resultant value returned.

FSCANF
SYNOPSIS

#include <stdio.h>

int fscanf(FILE * stream, char * fmt, ...)

DESCRIPTION: This routine performs formatted input from the specified stream. See scanf()
for a full description of the behaviour of the routine. Vfscanf() is similar to fscanf() but takes a
variable argument list pointer rather than a list of arguments. See the description of vastart() for
more information on variable argument lists.

SEE ALSO

scanf, sscanf, fopen, fclose

HI-TECH C – User’s Manual 125

FSEEK
SYNOPSIS

#include <stdio.h>

int fseek(FILE * stream, long offs, int wh)

DESCRIPTION: Fseek() positions the "file pointer" (i.e. a pointer to the next character to be
read or written) of the specified stream as follows:

	resultant location
0	offs
1	offs+previous location
2	offs+length of file

It should be noted that offs is a signed value. Thus the 3 allowed modes give postioning relative
to the beginning of the file, the current file pointer and the end of the file respectively. EOF is
returned if the positioning request could not be satisfied. Note however that positioning beyond
the end of the file is legal, but will result in an EOF indication if an attempt is made to read data
there. It is quite in order to write data beyond the previous end of file. Fseek() correctly
accounts for any buffered data.

SEE ALSO

lseek, fopen, fclose

126 HI-TECH C – User’s Manual

FTELL
SYNOPSIS

#include <stdio.h>

long ftell(FILE * stream)

DESCRIPTION: This function returns the current position of the conceptual read/write pointer
associated with stream. This is the position relative to the beginning of the file of the next byte
to be read from or written to the file.

SEE ALSO

fseek

FWRITE
SYNOPSIS

#include <stdio.h>

int fwrite(void * buf, size_t size, size_t cnt, FILE * stream)

DESCRIPTION: Cnt objects of length size bytes will be written from memory at buf, to the
specified stream. The number of whole objects written will be returned, or 0 if none could be
written. Any return value not equal to cnt should be treated as an error (cf. fread()).

SEE ALSO

fread, fopen, fclose

HI-TECH C – User’s Manual 127

_GETARGS
SYNOPSIS

#include <sys.h>

char ** _getargs(char * buf, char * name)
extern int _argc_;

DESCRIPTION: This routine performs I/O redirection (CP/M only) and wild card expansion.
Under MS-DOS I/O redirection is performed by the operating system. It is called from startup
code to operate on the command line if the -R option is used to the C command, but may also be
called by user-written code. If the buf argument is null, it will read lines of text from standard
input. If the standard input is a terminal (usually the console) the name argument will be written
to the standard error stream as a prompt. If the buf argument is not null, it will be used as the
source of the string to be processed. The returned value is a pointer to an array of strings,
exactly as would be pointed to by the argv argument to the main() function. The number of
strings in the array may be obtained from the global _argc_. For example, a typical use of this
function would be:

#include <sys.h>

main(argc, argv)
char ** argv;
{
 extern char ** _getargs();

extern int _argc_;

if(argc == 1) { /* no arguments */
argv = _getargs(0, "myname");
argc = _argc_;
}

}

There will be one string in the array for each word in the buffer processed. Quotes, either single
(') or double (") may be used to include white space in "words". If any wild card characters (? or
*) appear in a non-quoted word, it will be expanded into a string of words, one for each file
matching the word. The usual CP/M conventions are followed for this expansion. On CP/M any
occurence of the redirection characters > and < outside quotes will be handled in the following
manner:

> name will cause standard output to be redirected to the file name.
< name will cause standard input to be redirected from the file name.

>> name will cause standard output to append to file name.

128 HI-TECH C – User’s Manual

White space is optional between the > or < character and the file name, however it is an error for
a redirection character not to be followed by a file name. It is also an error if a file cannot be
opened for input or created for output. An append redirection (>>) will create the file if it does
not exist. If the source of text to be processed is standard input, several lines may be supplied by
ending each line (except the last) with a backslash (\). This serves as a continuation character.
Note that the newline following the backslash is ignored, and not treated as white space.

GETC
SYNOPSIS

#include <stdio.h>

int getc(FILE * stream)
FILE * stream;

DESCRIPTION: One character is read from the specified stream and returned. EOF will be
returned on end-of-file or error. This is the macro version of fgetc(), and is defined in stdio.h.

HI-TECH C – User’s Manual 129

GETCH, GETCHE, UNGETCH, PUTCH
SYNOPSIS

#include <conio.h>

char getch(void)
char getche(void)
void putch(int c)

DESCRIPTION: Getch() reads a single character from the console keyboard and returns it
without echoing. Getche() is similar but does echo the character typed. Ungetch() will push
back one character such that the next call to getch() or getche() will return that character.
Putch() outputs the character c to the console screen, prepending a carriage return if the
character is a newline.

SEE ALSO

cgets, cputs

GETCHAR
SYNOPSIS

#include <stdio.h>

int getchar(void)

DESCRIPTION: Getchar() is a getc(stdin) operation. It is a macro defined in stdio.h. Note that
under normal circumstances getchar() will NOT return unless a carriage return has been typed on
the console. To get a single character immediately from the console, use the routine getch().

SEE ALSO

getc, fgetc, freopen, fclose

130 HI-TECH C – User’s Manual

GETCWD (MS-DOS only)
SYNOPSIS

#include <sys.h>

char * getcwd(int drive)

DESCRIPTION: Getcwd() returns the path name of the current working directory on the
specified drive, where drive == 0 represents the current drive, drive == 1 represents A:, drive ==
2 represents B: etc. The return value is a pointer to a static area of memory which will be
overwritten on the next call to getcwd().

SEE ALSO

chdir

GETENV
SYNOPSIS

#include <stdlib.h>

char * getenv(char * s)
extern char ** environ;

DESCRIPTION: Getenv() will search the vector of environment strings for one matching the
argument supplied, and return the value part of that environment string. For example, if the
environment contains the string

COMSPEC=A:\COMMAND.COM

then getenv("COMSPEC") will return A:\COMMAND.COM. The global variable environ is a
pointer to an array of pointers to environment strings, terminated by a null pointer. This array is
initialized at startup time under MS-DOS from the environment pointer supplied when the
program was executed. Under CP/M no such environment is supplied, so the first call to
getenv() will attempt to open a file in the current user number on the current drive called
ENVIRON. This file should contain definitions for any environment variables desired to be
accessible to the program, e.g.

HITECH=0:C:

Each variable definition should be on a separate line, consisting of the variable name
(conventionally all in upper case) followed without intervening white space by an equal sign ('=')
then the value to be assigned to that variable.

HI-TECH C – User’s Manual 131

GETS
SYNOPSIS

#include <stdio.h>

char * gets(char * s)

DESCRIPTION: Gets() reads a line from standard input into the buffer at s, deleting the newline
(cf. fgets()). The buffer is null terminated. It returns its argument, or NULL on end-of-file.

SEE ALSO

fgets, freopen

GETUID (CP/M only)
SYNOPSIS

#include <sys.h>

int getuid(void)

DESCRIPTION: Getuid() returns the current user number. On CP/M, the current user number
determines the user number associated with an opened or created file, unless overridden by an
explicit user number prefix in the file name.

SEE ALSO

setuid, open

132 HI-TECH C – User’s Manual

GETW
SYNOPSIS

#include <stdio.h>

int getw(FILE * stream)

DESCRIPTION: Getw() returns one word (16 bits for the Z80 and 8086) from the nominated
stream. EOF is returned on end-of- file, but since this is a perfectly good word, the feof() macro
should be used for testing for end-of- file. When reading the word, no special alignment in the
file is necessary, as the read is done by two consecutive getc()'s. The byte ordering is however
undefined. The word read should in general have been written by putw().

SEE ALSO

putw, getc, fopen, fclose

GMTIME, LOCALTIME
SYNOPSIS

#include <time.h>

struct tm * gmtime(time_t * t)
struct tm * localtime(time_t * t)

DESCRIPTION: These functions convert the time pointed to by t which is in seconds since
00:00:00 on Jan 1, 1970, into a broken down time stored in a structure as defined in timeh.
Gmtime() performs a straight conversion, while localtime() takes into account the contents of the
global integer time_zone. This should contain the number of minutes that the local time zone is
WESTWARD of Greenwich. Since there is no way under MS-DOS of actually pre-determining
this value, by default localtime() will return the same result as gmtime().

SEE ALSO

ctime, asctime, time

HI-TECH C – User’s Manual 133

INP, OUTP
SYNOPSIS

char inp(unsigned port)

void outp(unsigned, unsigned data)

DESCRIPTION: These routines read and write bytes to and from I/O ports. Inp() returns the
data byte read from the specified port, and outp() outputs the data byte to the specified port.

INT86, INT86X, INTDOS, INTDOSX
SYNOPSIS

#include <dos.h>

int int86(int intno, union REGS * inregs, union REGS * outregs)
int int86x(int intno, union REGS inregs, union REGS outregs, struct SREGS * segregs)
int intdos(union REGS * inregs, union REGS * outregs)
int intdosx(union REGS * inregs, union REGS * outregs, struct SREGS * segregs)

DESCRIPTION: These functions allow calling of software interrupts from C programs. Int86()
and int86x() execute the software interrupt specified by intno while intdos() and intdosx()
execute interrupt 21(hex), which is the MS-DOS system call interrupt. The inregs pointer should
point to a union containing values for each of the general purpose registers to be set when
executing the interrupt, and the values of the registers on return are copied into the union pointed
to by outregs. The x versions of the calls also take a pointer to a union defining the segment
register values to be set on execution of the interrupt, though only ES and DS are actually set
from this structure.

SEE ALSO

segread

134 HI-TECH C – User’s Manual

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.
SYNOPSIS

#include <ctype.h>

isalnum(char c)
isalpha(char c)
isascii(char c)
iscntrl(char c)
isdigit(char c)
islower(char c)
isprint(char c)
isgraph(char c)
ispunct(char c)
isspace(char c)
isupper(char c)
char c;

DESCRIPTION: These macros, defined in ctype.h, test the supplied character for membership
in one of several overlapping groups of characters. Note that all except isascii are defined for c
iff isascii(c) is true.

isalnum(c) c is alphanumeric
isalpha(c) c is in A-Z or a-z
isascii(c) c is a 7 bit ascii character
iscntrl(c) c is a control character
isdigit(c) c is a decimal digit
islower(c) c is in a-z
isprint(c) c is a printing char
isgraph(c) c is a non-space printable character
ispunct(c) c is not alphanumeric
isspace(c) c is a space, tab or newline
isupper(c) c is in A-Z
isxdigit(c) c is in 0-9 or a-f or A-F

SEE ALSO

toupper, tolower, toascii

HI-TECH C – User’s Manual 135

ISATTY
SYNOPSIS

#include <unixio.h>

int isatty(int fd)

DESCRIPTION: This tests the type of the file associated with fd. It returns true if the file is
attached to a tty-like device. This would normally be used for testing if standard input is coming
from a file or the console. For testing STDIO streams, use isatty(fileno(stream)).

KBHIT
SYNOPSIS

#include <conio.h>

int kbhit(void)

DESCRIPTION: This function returns 1 if a character has been pressed on the console
keyboard, 0 otherwise. Normally the character would then be read via getch().

SEE ALSO

getch, getche

136 HI-TECH C – User’s Manual

LONGJMP
SYNOPSIS

#include <setjmp.h>

void longjmp(jmp_buf buf, int val)

DESCRIPTION: Longjmp(), in conjunction with setjmp(), provides a mechanism for
non-local gotos. To use this facility, setjmp() should be called with a jmp_buf argument
in some outer level function. The call from setjmp() will return 0. To return to this level
of execution, may be called with the same jmp_buf argument from an inner level of
execution. Note however that the function which called setjmp() must still be active
when longjmp() is called. Breach of this rule will cause disaster, due to the use of a stack
containing invalid data. The val argument to longjmp() will be the value apparently
returned from the setjmp(). This should normally be non-zero, to distinguish it from the
genuine setjmp() call. For example:

#include <setjmp.h>

Static jmp_buf jb_err;

main()
{

if(setjmp(jb_err)) {
printf("An error occured0);
exit(1);
}
a_func();

}

a_func()
{

if(do_whatever() != 0)
longjmp(jb_err, 1);
if(do_something_else() != 0)
longjmp(jb_err, 2);

}

The calls to longjmp() above will never return; rather the call to setjmp() will appear to return,
but with a return value equal to the argument supplied to longjmp().

SEE ALSO

setjmp

HI-TECH C – User’s Manual 137

LSEEK SYNOPSIS

#include <unixio.h>

long lseek(int fd, long offs, int wh)

DESCRIPTION: This function operates in an analogous manner to fseek(), however it does so
on unbuffered low-level i/o file descriptors, rather than on STDIO streams. It also returns the
resulting pointer location. Thus lseek(fd, 0L, 1) returns the current pointer location without
moving it. -1 is returned on error.

SEE ALSO

open, close, read, write

MALLOC
SYNOPSIS

#include <stdlib.h>

void * malloc(size_t cnt)

DESCRIPTION: Malloc() attempts to allocate cnt bytes of memory from the "heap", the
dynamic memory allocation area. If successful, it returns a pointer to the block, otherwise 0 is
returned. The memory so allocated may be freed with free(), or changed in size via realloc().
Malloc() calls sbrk() to obtain memory, and is in turn called by calloc(). Malloc() does not clear
the memory it obtains.

SEE ALSO

calloc, free, realloc

138 HI-TECH C – User’s Manual

MEMSET, MEMCPY, MEMCMP, MEMMOVE
SYNOPSIS

#include <string.h>

void memset(void s, char c, size_t n)
void * memcpy(void * d, void * s, size_t n)
int memcmp(void * s1, void * s2, size_t n)
void * memmove(void * s1, void * s2, size_t n)
void * memchr(void * s, int c, size_t n)

DESCRIPTION: Memset() initializes n bytes of memory starting at the location pointed to by s
with the character c. Memcpy() copies n bytes of memory starting from the location pointed to
by s to the block of memory pointed to by d. The result of copying overlapping blocks is
undefined. Memcmp() compares two blocks of memory, of length n, and returns a signed value
similar to strncmp(). Unlike strncmp() the comparision does not stop on a null character. The
ascii collating sequence is used for the comparision, but the effect of including non-ascii
characters in the memory blocks on the sense of the return value is indeterminate. Memmove()
is similar to memcpy() except copying of overlapping blocks is handled correctly. The memchr()
function locates the first occurence of c (converted to unsigned char) in the initial n characters of
the object pointed to by s.

SEE ALSO

strncpy, strncmp, strchr

HI-TECH C – User’s Manual 139

MKDIR, RMDIR SYNOPSIS

#include <sys.h>

int mkdir(char * s)
int rmdir(char * s)

DESCRIPTION: These functions allow the creation (mkdir()) and deletion (rmdir()) of sub-
directories under the MS-DOS operating system. The argument s may be an arbitrary pathname,
and the return value will be -1 if the creation or removal was unsuccessful.

SEE ALSO

chdir

MSDOS, MSDOSCX
SYNOPSIS

#include <dos.h>

long msdos(int ax, int dx, int cx, int bx, int si, int di)
long msdoscx(int ax, int dx, int cx, int bx, int si, int di)

DESCRIPTION: These functions allow direct access to MS-DOS system calls. The arguments
will be placed in the registers implied by their names, while the return value will be the contents
of AX and DX (for msdos()) or the contents of DX and CX (for msdoscx()). Only as many
arguments as necessary need be supplied, e.g. if only AH and DX need have specified valued,
then only 2 argument would be required. The following piece of code outputs a form-feed to the
printer.

msdos(0x500, '\f');

Note that the system call number (in this case 5) must be multiplied by 0x100 since MS-DOS
expects the call number in AH, the high byte of AX.

SEE ALSO

intdos, intdosx, int86, int86x

140 HI-TECH C – User’s Manual

OPEN
SYNOPSIS

#include <unixio.h>

int open(char * name, int mode)

DESCRIPTION: Open() is the fundamental means of opening files for reading and writing. The
file specified by name is sought, and if found is opened for reading, writing or both. Mode is
encoded as follows:

Mode Meaning
0 Open for reading only
1 Open for writing only
2 Open for both reading and writing

The file must already exist - if it does not, creat() should be used to create it. On a successful
open, a file descriptor is returned. This is a non-negative integer which may be used to refer to
the open file subsequently. If the open fails, -1 is returned. The syntax of a CP/M filename is:

[uid:][drive:]name.type

where uid is a decimal number 0 to 15, drive is a letter A to P or a to p, name is 1 to 8 characters
and type is 0 to 3 characters. Though there are few inherent restrictions on the characters in the
name and type, it is recommended that they be restricted to the alphanumerics and standard
printing characters. Use of strange characters may cause problems in accessing and/or deleting
the file.

One or both of uid: and drive: may be omitted; if both are supplied, the uid: must come first.
Note that the [and] are meta-symbols only. Some examples are:

fred.dat
file.c
0:xyz.com
0:a:file1.p
a:file2.

If the uid: is omitted, the file will be sought with uid equal to the current user number, as
returned by getuid(). If drive: is omitted, the file will be sought on the currently selected drive.
The following special file names are recognized:

lst: Accesses the list device - write only
pun: Accesses the punch device - write only
rdr: Accesses the reader device - read only
con: Accesses the system console - read/write

HI-TECH C – User’s Manual 141

File names may be in any case - they are converted to upper case during processing of the name.

MS-DOS filenames may be any valid MS-DOS 2.xx filename, e.g.

fred.nrk
A:\HITECH\STDIO.H

The special device names (e.g. CON, LST) are also recognized. These do not require (and
should not have) a trailing colon.

SEE ALSO

close, fopen, fclose, read, write, creat

PERROR
SYNOPSIS

#include <stdio.h>

void perror(char * s)

DESCRIPTION: This routine will print on the stderr stream the argument s, followed by a
descriptive message detailing the last error returned from an open, close read or write call.
Unfortunately CP/M does not provide definitive information relating to the error, except in the
case of a random read or write. Thus this routine is of limited usefulness under CP/M. MS-DOS
provides much more information however, and use of perror() after MS-DOS file handling calls
will certainly give useful diagnostics.

SEE ALSO

open, close, read, write

142 HI-TECH C – User’s Manual

PRINTF, VPRINTF
SYNOPSIS

#include <stdio.h>

int printf(char * fmt, ...)
int vprintf(char * fmt, va_list va_arg)

DESCRIPTION: Printf() is a formatted output routine, operating on stdout. There are
corresponding routines operating on a given stream (fprintf()) or into a string buffer (sprintf()).
Printf() is passed a format string, followed by a list of zero or more arguments. In the format
string are conversion specifications, each of which is used to print out one of the argument list
values. Each conversion specification is of the form %m.nc where the percent symbol %
introduces a conversion, followed by an optional width specification m. n is an optional precision
specification (introduced by the dot) and c is a letter specifying the type of the conversion. A
minus sign ('-') preceding m indicates left rather than right adjustment of the converted value in
the field. Where the field width is larger than required for the conversion, blank padding is
performed at the left or right as specified. Where right adjustment of a numeric conversion is
specified, and the first digit of m is 0, then padding will be performed with zeroes rather than
blanks.

If the character * is used in place of a decimal constant, e.g. in the format %*d, then one integer
argument will be taken from the list to provide that value. The types of conversion are:

F Floating point - m is the total width and n is the number of digits after the decimal point.

If n is omitted it defaults to 6.

E Print the corresponding argument in scientific notation. Otherwise similar to f.

G Use e or f format, whichever gives maximum precision in minimum width.

o x X u d Integer conversion - in radices 8, 16, 10 and 10 respectively. The conversion is

signed in the case of d, unsigned otherwise. The precision value is the total number
of digits to print, and may be used to force leading zeroes. E.g. %8.4x will print at
least 4 hex digits in an 8 wide field. Preceding the key letter with an l indicates that
the value argument is a long integer or unsigned value. The letter X prints out
hexadecimal numbers using the upper case letters A-F rather than a-f as would be
printed when using x.

s Print a string - the value argument is assumed to be a character pointer. At most n

characters from the string will be printed, in a field m characters wide.

HI-TECH C – User’s Manual 143

c The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus %% will
produce a single percent sign. Some examples:

printf("Total = %4d%%", 23)

yields 'Total =23%'
printf("Size is %lx" , size)

where size is a long, prints size as hexadecimal.
printf("Name = %.8s", "a1234567890")

yields 'Name = a1234567' printf("xx%*d", 3, 4) yields 'xx 4'

Printf returns EOF on error, 0 otherwise. Vprintf() is similar to printf() but takes a
variable argument list pointer rather than a list of arguments. See the description of
vastart() for more information on variable argument lists.

SEE ALSO

fprintf, sprintf

144 HI-TECH C – User’s Manual

PUTC
SYNOPSIS

#include <stdio.h>

int putc(int c, FILE * stream)

DESCRIPTION: Putc() is the macro version of fputc() and is defined in stdio.h. See fputc() for
a description of its behaviour.

SEE ALSO

fputc, getc, fopen, fclose

PUTCHAR
SYNOPSIS

#include <stdio.h>

int putchar(int c)

DESCRIPTION: Putchar() is a putc() operation on stdout, defined in stdio.h.

SEE ALSO

putc, getc, freopen, fclose

HI-TECH C – User’s Manual 145

PUTS
SYNOPSIS

#include <stdio.h>

int puts(char * s)

DESCRIPTION: Puts() writes the string s to the stdout stream, appending a newline. The null
terminating the string is not copied. EOF is returned on error.

SEE ALSO

fputs, gets, freopen, fclose

PUTW
SYNOPSIS

#include <stdio.h>

int putw(int w, FILE * stream)

DESCRIPTION: Putw() copies the word w to the given stream. It returns w, except on error, in
which case EOF is returned. Since this is a good integer, ferror() should be used to check for
errors.

SEE ALSO

getw, fopen, fclose

146 HI-TECH C – User’s Manual

QSORT
SYNOPSIS

#include <stdlib.h>

void qsort(void * base, size_t nel, size_t width, int (*func)())

DESCRIPTION: Qsort() is an implementation of the quicksort algorithm. It sorts an array of
nel items, each of length width bytes, located contiguously in memory at base. Func is a pointer
to a function used by qsort() to compare items. It calls func with pointers to two items to be
compared. If the first item is considered to be greater than, equal to or less than the second then
func() should return a value greater than zero, equal to zero or less than zero respectively.

Static short array[100];

#define SIZE sizeof array/sizeof array[0]
a_func(p1, p2)
short * p1, * p2;
{

return *p1 - *p2;
}

sort_em()
{

qsort(array, SIZE, sizeof array[0], a_func);
}

This will sort the array into ascending values. Note the use of sizeof to make the code
independent of the size of a short, or the number of elements in the array.

HI-TECH C – User’s Manual 147

RAND
SYNOPSIS

#include <stdlib.h>

int rand(void)

DESCRIPTION: Rand() is a pseudo-random number generator. It returns an integer in the
range 0 to 32767, which changes in a pseudo-random fashion on each call.

SEE ALSO

srand

READ
SYNOPSIS

#include <unixio.h>

int read(int fd, void * buf, size_t cnt)

DESCRIPTION: Read() will read from the file associated with fd up to cnt bytes into a buffer
located at buf. It returns the number of bytes actually read. A zero return indicates end-of-file.
A negative return indicates error. Fd should have been obtained from a previous call to open().
It is possible for read() to return less bytes than requested, e.g. when reading from the console, in
which case read() will read one line of input.

SEE ALSO

open, close, write

148 HI-TECH C – User’s Manual

REALLOC
SYNOPSIS

void * realloc(void * ptr, size_t cnt)

DESCRIPTION: Realloc() frees the block of memory at ptr, which should have been obtained
by a previous call to malloc(), calloc() or realloc(), then attempts to allocate cnt bytes of
dynamic memory, and if successful copies the contents of the block of memory located at ptr
into the new block. At most, realloc() will copy the number of bytes which were in the old
block, but if the new block is smaller, will only copy cnt bytes. If the block could not be
allocated, 0 is returned.

SEE ALSO

malloc, calloc, realloc

REMOVE
SYNOPSIS

#include <stdio.h>

int remove(char * s)

DESCRIPTION: Remove() will attempt to remove the file named by the argument s from the
directory. A return value of -1 indicates that the attempt failed.

SEE ALSO

unlink

HI-TECH C – User’s Manual 149

RENAME
SYNOPSIS

#include <stdio.h>

int rename(char * name1, char * name2)

DESCRIPTION: The file named by name1 will be renamed to name2. -1 will be returned if the
rename was not successful. Note that renames across user numbers or drives are not permitted.

SEE ALSO

open, close, unlink

REWIND
SYNOPSIS

#include <stdio.h>

int rewind(FILE * stream)

DESCRIPTION: This function will attempt to re-position the read/write pointer of the
nominated stream to the beginning of the file. A return value of -1 indicates that the attempt was
not successful, perhaps because the stream is associated with a non-random access file such as a
character device.

SEE ALSO

fseek, ftell

150 HI-TECH C – User’s Manual

SBRK
SYNOPSIS

char * sbrk(int incr)

DESCRIPTION: Sbrk() increments the current highest memory location allocated to the
program by incr bytes. It returns a pointer to the previous highest location. Thus sbrk(0) returns
a pointer to the current highest location, without altering its value. If there is insufficient
memory to satisfy the request, -1 is returned.

SEE ALSO

brk, malloc, calloc, realloc, free

SCANF
SYNOPSIS

#include <stdio.h>

int scanf(char * fmt, ...)
int vscanf(char *, va_list ap);

DESCRIPTION: Scanf() performs formatted input ("de-editing") from the stdin stream. Similar
functions are available for streams in general, and for strings. The function vscanf() is similar,
but takes a pointer to an argument list rather than a series of additional arguments. This pointer
should have been initialized with vastart(). The input conversions are performed according to
the fmt string; in general a character in the format string must match a character in the input;
however a space character in the format string will match zero or more "white space" characters
in the input, i.e. spaces, tabs or newlines. A conversion specification takes the form of the
character %, optionally followed by an assignment suppression character ('*'), optionally
followed by a numerical maximum field width, followed by a conversion specification character.
Each conversion specification, unless it incorporates the assignment suppression character, will
assign a value to the variable pointed at by the next argument. Thus if there are two conversion
specifications in the fmt string, there should be two additional pointer arguments. The
conversion characters are as follows:

o x d Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field

width was supplied, take at most that many characters from the input. A leading minus
sign will be recognized.

HI-TECH C – User’s Manual 151

f Skip white space, then convert a floating number in either conventional or scientific

notation. The field width applies as above.

s Skip white space, then copy a maximal length sequence of non-white-space characters.

The pointer argument must be a pointer to char. The field width will limit the number of
characters copied. The resultant string will be null-terminated.

c Copy the next character from the input. The pointer argument is assumed to be a pointer

to char. If a field width is specified, then copy that many characters. This differs from
the s format in that white space does not terminate the character sequence.

The conversion characters o, x, u, d and f may be preceded by an l to indicate that the
corresponding pointer argument is a pointer to long or double as appropriate. A preceding h will
indicate that the pointer argument is a pointer to short rather than int.

Scanf() returns the number of successful conversions; EOF is returned if end-of-file was seen
before any conversions were performed. Some examples are:

scanf("%d %s", &a, &s)
with input "12s", will assign 12 to a, and "s" to s.

scanf("%4cd %lf", &c, &f)

with input " abcd -3.5", will assign " abc" to c, and -3.5 to f.

 SEE ALSO

fscanf, sscanf, printf, va_arg

152 HI-TECH C – User’s Manual

SEGREAD
SYNOPSIS

#include <dos.h>
int segread(struct SREGS * segregs)

DESCRIPTION: Segread() copies the values of the segment registers into the structure pointed
to by segregs.

SEE ALSO

int86, int86x, intdos, intdosx

SETJMP SYNOPSIS

#include <setjmp.h>
int setjmp(jmp_buf buf)

DESCRIPTION: Setjmp() is used with longjmp() for non-local gotos. See longjmp() for further
information.

SEE ALSO

longjmp

HI-TECH C – User’s Manual 153

SETUID (CP/M only)
SYNOPSIS

#include <sys.h>

void setuid(int uid)

DESCRIPTION: Setuid() will set the current user number to uid. Uid should be a number in the
range 0-15.

SEE ALSO

getuid

SETVBUF, SETBUF SYNOPSIS

#include <stdio.h>

int setvbuf(FILE * stream, char * buf, int mode, size_t size);
void setbuf(FILE * stream, char * buf)

DESCRIPTION: The setvbuf() function allows the buffering behaviour of a STDIO stream to be
altered. It supersedes the function setbuf() which is retained for backwards compatibility. The
arguments to setvbuf() are as follows: stream designates the STDIO stream to be affected; buf is
a pointer to a buffer which will be used for all subsequent I/O operations on this stream. If buf is
null, then the routine will allocate a buffer from the heap if necessary, of size BUFSIZ as defined
in <stdio.h>. mode may take the values _IONBF, to turn buffering off completely, _IOFBF, for
full buffering, or _IOLBF for line buffering. Full buffering means that the associated buffer will
only be flushed when full, while line buffering means that the buffer will be flushed at the end of
each line or when input is requested from another STDIO stream. size is the size of the buffer
supplied. For example:

setvbuf(stdout, my_buf, _IOLBF, sizeof my_buf);

If a buffer is supplied by the caller, that buffer will remain associated with that stream even over
fclose(), fopen() calls until another setvbuf() changes it.

SEE ALSO

fopen, freopen, fclose

154 HI-TECH C – User’s Manual

SET_VECTOR
SYNOPSIS

#include <intrpt.h>
typedef interrupt void (*isr)();
isr set_vector(isr * vector, isr func);

DESCRIPTION: This routine allows an interrupt vector to be initialized. The first argument
should be the address of the interrupt vector (not the vector number but the actual address) cast
to a pointer to isr, which is a typedef'd pointer to an interrupt function. The second argument
should be the function which you want the interrupt vector to point to. This must be declared
using the interrupt type qualifier. The return value of setvector() is the previous contents of the
vector.

SEE ALSO

di(), ei()

HI-TECH C – User’s Manual 155

SIGNAL
SYNOPSIS

#include <signal.h>
void (* signal)(int sig, void (*func)());

DESCRIPTION: Signal() provides a mechanism for catching control-C's (ctrl-BREAK for MS-
DOS) typed on the console during I/O. Under CP/M the console is polled whenever an I/O call
is performed, while for MS-DOS the polling depends on the setting of the BREAK command. If
a control-C is detected certain action will be performed. The default action is to exit summarily;
this may be modified with signal(). The sig argument to signal may at the present time be only
SIGINT, signifying an interrupt condition. The func argument may be one of SIG_DFL,
representing the default action, SIG_IGN, to ignore control-C's completely, or the address of a
function which will be called with one argument, the number of the signal caught, when a
control-C is seen. As the only signal supported is SIGINT, this will always be the value of the
argument to the called function.

SEE ALSO

exit

SIN
SYNOPSIS

#include <math.h>

double sin(double f);

DESCRIPTION: This function returns the sine function of its argument.

SEE ALSO

cos, tan, asin, acos, atan

156 HI-TECH C – User’s Manual

SPAWNL, SPAWNV, SPAWNVE
SYNOPSIS

int spawnl(char * n, char * argv0, ...);
int spawnv(cahr * n, char ** v)
int spawnve(char * n, char ** v, char ** e)

DESCRIPTION: These functions will load and execute a sub-program, named by the argument
n. The calling conventions are similar to the functions execl() and execv(), the difference being
that the spawn functions return to the calling program after termination of the sub-program,
while the exec functions return only if the program could not be executed. Spawnve() takes an
environment list in the same format as the argument list which will be supplied to the executed
program as its environment.

SEE ALSO

execl, execv

SPRINTF
SYNOPSIS

#include <stdio.h>

int sprintf(char * buf, char * fmt, ...);
int vsprintf(char * buf, char * fmt, va_list ap);

DESCRIPTION: Sprintf() operates in a similar fashion to printf(), except that instead of placing
the converted output on the stdout stream, the characters are placed in the buffer at buf. The
resultant string will be nullterminated, and the number of characters in the buffer will be
returned. Vsprintf takes an argument pointer rather than a list of arguments.

SEE ALSO

printf, fprintf, sscanf

HI-TECH C – User’s Manual 157

SQRT
SYNOPSIS

#include <math.h>

double sqrt(double f)

DESCRIPTION: Sqrt() implements a square root function using Newton's approximation.

SEE ALSO

exp

SSCANF
SYNOPSIS

#include <stdio.h>

int sscanf(char * buf, char * fmt, ...);
int vsscanf(char * buf, char * fmt, va_list ap);

DESCRIPTION: Sscanf() operates in a similar manner to scanf(), except that instead of the
conversions being taken from stdin, they are taken from the string at buf.

SEE ALSO

scanf, fscanf, sprintf

158 HI-TECH C – User’s Manual

SRAND
SYNOPSIS

#include <stdlib.h>

void srand(int seed)

DESCRIPTION: Srand() initializes the random number generator accessed by rand() with the
given seed. This provides a mechanism for varying the starting point of the pseudo-random
sequence yielded by rand(). On the z80, a good place to get a truly random seed is from the
refresh register. Otherwise timing a response from the console will do.

SEE ALSO

rand

STAT
SYNOPSIS

#include <stat.h>

int stat(char * name, struct stat * statbuf)

DESCRIPTION: This routine returns information about the file by name. The information
returned is operating system dependent, but may include file attributes (e.g. read only), file size
in bytes, and file modification and/or access times. The argument name should be the name of
the file, and may include path names under DOS, user numbers under CP/M, etc. The argument
statbuf should be the address of a structure as defined in stat.h which will be filled in with the
information about the file. The structure of struct stat is as follows:

struct stat
{
Short st_mode; /* flags */
Long st_atime; /* access time */
Long st_mtime; /* modification time */
Long st_size; /* file size */
};

The access and modification times (under DOS these are both set to the modification time) are in
seconds since 00:00:00 Jan 1 1970. The function ctime() may be used to convert this to a
readable value. The file size is self explanatory. The flag bits are as follows:

HI-TECH C – User’s Manual 159

 Flag Meaning
S_IFMT mask for file type
S_IFDIR file is a directory
S_IFREG file is a regular file
S_IREAD file is readable
S_IWRITE file is writeable
S_IEXEC file is executable
S_HIDDEN file is hidden
S_SYSTEM file is marked system
S_ARCHIVE file has been written to

Stat returns 0 on success, -1 on failure, e.g. if the file could not be found.

SEE ALSO

ctime, creat, chmod

STRCAT, STRCMP, STRCPY, STRLEN et. al.
SYNOPSIS

#include <string.h>

char * strcat(char * s1,
char * s2); int strcmp(char * s1, char * s2);
char * strcpy(char * s1, char * s2);
int strlen(char * s);
char * strncat(char * s1, char * s2, size_t n);
int strncmp(char * s1, char * s2, size_t n);
char * strncpy(char * s1, char * s2, size_t n);

DESCRIPTION: These functions provide operations on null-terminated strings. Strcat()
appends the string s2 to the end of the string s1. The string at s1 will be null terminated.
Needless to say the buffer at s1 must be big enough. Strcmp() compares the two strings and
returns a number greater than 0, 0 or a number less than 0 according to whether s1 is greater
than, equal to or less than s2. The comparision is via the ascii collating order, with the first
character the most significant. Strcpy() copies s2 into the buffer at s1, null terminating it.
Strlen() returns the length of s1, not including the terminating null. Strncat(), strncmp() and
strncpy() will catenate, compare and copy s2 and s1 in the same manner as their similarly named
counterparts above, but involving at most n characters. For strncpy(), the resulting string may
not be null terminated.

160 HI-TECH C – User’s Manual

STRCHR, STRRCHR
SYNOPSIS

#include <string.h>

char * strchr(char * s, int c)
char * strrchr(char * s, int c)

DESCRIPTION: These functions locate an instance of the character c in the string s. In the case
of strchr() a pointer will be returned to the first instance of the character found by searching
from the beginning of the string, while strrchr() searches backwards from the end of the string.
A null pointer is returned if the character does not exist in the string.

SEE ALSO

SYSTEM
SYNOPSIS

#include <sys.h>

int system(char * s)

DESCRIPTION: When executed under MS-DOS system() will pass the argument string to the
command processor, located via the environment string COMSPEC, for execution. The exit
status of the command processor will be returned from the call to system(). For example, to set
the baud rate on the serial port on an MS-DOS machine:

system("MODE COM1:96,N,8,1,P");

This function will not work on CP/M-86 since it does not have an invokable command
interpreter. Under Concurrent CP/M the CLI system call is used.

SEE ALSO

spawnl, spawnv

HI-TECH C – User’s Manual 161

TAN
SYNOPSIS

#include <math.h>

double tan(double f);

DESCRIPTION: This is the tangent function.

SEE ALSO

sin, cos, asin, acos, atan

TIME
SYNOPSIS

#include <time.h>

time_t time(time_t * t)

DESCRIPTION: This function returns the current time in seconds since 00:00:00 on Jan 1,
1970. If the argument t is nonnull, the same value is stored into the object pointed to by t. The
accuracy of this function is naturally dependent on the operating system having the correct time.
This function does not work under CP/M-86 or CP/M 2.2 but does work under Concurrent-CP/M
and CP/M+.

SEE ALSO

ctime, gmtime, localtime, asctime

162 HI-TECH C – User’s Manual

TOUPPER, TOLOWER, TOASCII
SYNOPSIS

#include <ctype.h>
char toupper(int c);
char tolower(int c);
char toascii(int c);
char c;

DESCRIPTION: Toupper() converts its lower case alphabetic argument to upper case,
tolower() performs the reverse conversion, and toascii() returns a result that is guaranteed in the
range 0-0177. Toupper() and tolower() return their arguments if it is not an alphabetic character.

SEE ALSO

islower, isupper, isascii et. al.

UNGETC
SYNOPSIS

#include <stdio.h>

int ungetc(int c, FILE * stream)

DESCRIPTION: Ungetc() will attempt to push back the character c onto the named stream, such
that a subsequent getc() operation will return the character. At most one level of pushback will
be allowed, and if the stream is not buffered, even this may not be possible. EOF is returned if
the ungetc() could not be performed.

SEE ALSO

getc

HI-TECH C – User’s Manual 163

UNLINK
SYNOPSIS

int unlink(char * name)

DESCRIPTION: Unlink() will remove (delete) the named file, that is erase the file from its
directory. See open() for a description of the file name construction. Zero will be returned if
successful, -1 if the file did not exist or it could not be removed.

SEE ALSO

open, close, rename, remove

VA_START, VA_ARG, VA_END
SYNOPSIS

#include <stdarg.h>

void va_start(va_list ap, parmN);
type va_arg(ap, type);
void va_end(va_list ap);

DESCRIPTION: These macros are provided to give access in a portable way to parameters to a
function represented in a prototype by the ellipsis symbol (...), where type and number of
arguments supplied to the function are not known at compile time. The rightmost parameter to
the function (shown as parmN) plays an important role in these macros, as it is the starting point
for access to further parameters. In a function taking variable numbers of arguments, a variable
of type va_list should be declared, then the macro va_start invoked with that variable and the
name of parmN. This will initialize the variable to allow subsequent calls of the macro va_arg to
access successive parameters. Each call to va_arg requires two arguments; the variable
previously defined and a type name which is the type that the next parameter is expected to be.
Note that any arguments thus accessed will have been widened by the default conventions to int,
unsigned int or double. For example if a character argument has been passed, it should be
accessed by va_arg(ap, int) since the char will have been widened to int. An example is given
below of a function taking one integer parameter, followed by a number of other parameters. In
this example the function expects the subsequent parameters to be pointers to char, but note that
the compiler is not aware of this, and it is the programmers responsibility to ensure that correct
arguments are supplied.

164 HI-TECH C – User’s Manual

#include <stdarg.h>
prf(int n, ...)
{
va_list ap;

va_start(ap, n);
while(n--)
puts(va_arg(ap, char *));
va_end(ap);

}

WRITE
SYNOPSIS

#include <unixio.h>

int write(int fd, void * buf, size_t cnt)

DESCRIPTION: Write() will write from the buffer at buf up to cnt bytes to the file associated
with the file descriptor fd. The number of bytes actually written will be returned. EOF or a value
less than cnt will be returned on error. In any case, any return value not equal to cnt should be
treated as an error (cf. read()).

SEE ALSO

open, close, read

HI-TECH C – User’s Manual 165

INDEX

8086 70 CP/M 26,106,131,155
absolute value 116 CP/M-80 compiler 2
acos() 103 cputs() 107
address creat() 111

link 73 creating a library 76
load 73 CREF 83

ANSI Standard 13,17 cross compilers 3
Array cross reference 36,83

dimension 16 ctime() 111
ndex 16 ctrl-Z 26,120
size 16 date and time 104

ASCII 26 debugging 10,105
asctime() 104 device name as file 23
asin() 103 device
assembler as file 141

in C programs 20 di() 113
assert() 105 directory 108,139
atan() 103 current 130
atan2() 103 disk changing on floppy disk
Atari ST 3 systems 3
atexit() 104 disk space 33
atof() 105 div() 12
atoi() 105 div_t 112
atol() 105 dup() 113
bdos() 106 editor 3,33
binary output file 8 ei() 113
bios() 106 entering long commands 7
braces Enumerated Types 16

omission of 16 environment 130
byte ordering 21 error message:
C command 3,7 Can't generate code 33
C reference books 2 Error closing file 33
calloc() 107 No room 33
carriage return 26,120 out of memory 33
ceil() 116 Undefined symbol 33
cgets() 107 Write error 33
change file attributes 108 error messages 23,33
character testing 134 format of 23
chdir() 108 LIBR 78
checksum 79,80 list of 23,85
chmod() 108 redirection of 23
class name 70 execl() 114
close() 109 executing a sub-program 156
clreof() 109 executing system commands
clrerr() 109 160
command line 7,12,77,160 execution profiling 10
Compatibility 25 execv() 114
compiler driver 3 exit() 114
Compiler Structure 5 exp() 115
console I/O 107,129,135 exponentional functions 115
control-C handling 155 Extern Declarations 30
converting ascii to binary fabs() 116

105 fclose() 116
cos() 110 feof() 117
cosh() 110 ferror() 117

166 HI-TECH C – User’s Manual

fflush() 117 getw() 132
fgetc() 118 global variables 30
fgets() 118 gmtime() 132
FILE 99 hex output file 8
file descriptor 27,111,119 I/O redirection 127

duplicating 113 I/O
FILE pointer 27 ASCII 26
File Binary 26

access time 158 standard 25,99
attributes 108,158 in-line assembler 20
closing a 109,116 Initialization Syntax 16
creating a 111 initializer 16
deleting a 148,163 inp() 133
flushing buffer to a 117 int86() 133
information about a 158 int86x() 133
modification time 158 intdos() 133
opening a 119,123,140 intdosx() 133
random access to a Intel hex format 79
125,137 interrupt 133
reading from a 122,147 interrupt handling 155
renaming a 149 interrupt vector
size 158 setting 154
type of a 135 isalnul() 134
writing to a 126,164 isalnum() 134

fileno() 119 isalpha() 134
floating point isascii() 134

library 27 satty() 135
options required to use 4 iscntrl() 134

 isdigit() 134
floor() 116 isgraph() 134
fopen() 26,119 islower() 134
formatted input 124,150 ispunct() 134
formatted printing 121,142 isspace() 134
fprintf() 121 isupper() 134
fputc() 121 kbhit() 135
fputs() 122 Kernighan and Ritchie 2,16
fread() 122 large model 70,80
free() 123 ldexp() 124
freopen() 123 ldiv() 112
frexp() 124 LIBR 75
fscanf() 124 librarian 75
fseek() 125 libraries 7
ftell() 126 library manager 75
function parameter 163 libraryordering 77
function library

declaration 17 creating 76
large 33 floating point 33
parameters 17 ordering 33
prototype 17,163 line number symbols 10

fwrite() 126 linker 69
getc() 128 LINT 16
getch() 129 localtime 132
getchar() 25,129 log() 115
getche() 129 log10() 115
getcwd() 130 logarithmic functions 115
getenv() 130 long 30
gets() 131 longjmp() 136
getuid() 131 lseek() 137

HI-TECH C – User’s Manual 167

Machine Dependencies 21 pack pragma 20
Macros parameter

predefined 21 type 17
malloc() 137 perror() 141
Member Names 13,29 portable code 21
memcmp() 138 pow() 115
memcpy() 138 pragma 20,21
memory allocation 107,148,150 printf 33
Releasing 123 printf() 142

 program execution 156
memory model 31 psect
memory requirements 2 linking 69
memset() 138 local 70
mkdir() 139 putc() 144
Motorola hex format 80 putch() 129
MS-DOS 108,133,139,155 putchar() 144
msdos() 139 puts() 145
msdoscx() 139 putw() 145
multiple definitions 30 qsort() 146
newline 26 rand() 147
Newton's approximation 157 random numbers 147,158
non-local goto 136,152 read() 147
objtohex 72,79 realloc() 148
open() 140 relocation 69
Operating Details 7 remove() 148
Options 7 rename() 149

-1 10 return 26,120
-11 11 rewind() 149
-2 11 rmdir() 139
-6301 11 S format hex 80
-A 8 sbrk() 150
-B 9 scanf 33
-C 7 scanf() 150
-CPM 7 segment registers 152
-CR 7 segread() 152
-D 8 self relocation 72
-E 10 setbuf() 153
-F 8 setjmp() 152
-G 10 setuid() 153
-H 10 setvbuf() 153
-I 8 set_vector() 154
-LF 4,27,33 shift
-M 8 signed 14
-O 8 unsigned 14
-Ooutfile 8 short 21,30
-P 10 signal() 155
-R 8 sin() 155
-S 7 sinh() 110
-U 8 size of data types 21
-V 3,8 sorting 146
-W 10 source file naming 3
-X 8 source level debugging 10
-Z 10 spawnl() 156
Linker 71 spawnv() 156

outp() 133 spawnve() 156
pack 21 Specific Features 13
 sprintf() 156
 sqrt() 157

168 HI-TECH C – User’s Manual

square root function 157 Unsigned Types 14
srand() 158 user ID 131,153
sscanf() 157 V3.09 2
Standard Libraries 25 va_arg 18,163
Standard Library Functions va_end 163
 99 va_start 163
stat() 158 void 18
stdarg.h 18,163 Pointer to 18
STDIO 25,27,99 warning level 10
storage allocator 18 warning messages
strcat() 159 suppressing 10
strchr() 160 wild card expansion 127
strcmp() 159 Wordstar 33
strcpy() 159 write() 164
stream 27,99 Z180 MMU 68 string
manipulation 159 Bank Base Register 68
strlen() 159 BBR 68
strncat() 159 CBAR 68
strncmp() 159 CBR 68
strncpy() 159 Common Base Register 68
strrchr() 160 Common/Bank Area Register
Structure Operations 15 68
structure packing 20 Z180 Registers 68
structures ASCI 68

as function argument 15 Bank Base Register 68
assignment 15 BBR 68
functions returning 15 BCR0H 68

Stylistic Considerations 29 BCR0L 68
symbol file 10,80 BCR1H 68
symbols BCR1L 68
cross reference 83 CBAR 68
global 70,76 CBR 68
System Requirements 2 CNTLA0 68
system() 160 CNTLA1 68
tan() 161 CNTLB0 68
tanh() 110 CNTLB1 68
temporary files 4 CNTR 68
text editor 3 Common Base Register 68
time and date 104 Common/Bank Area Register 68
time() 161
toascii() 162 CSI/0 68
tolower() 162 DAR0B 68
toupper() 162 DAR0H 68
trigonometric functions 103,110 DAR0L 68
 DCNTL 68
Hyperbolic 110 DMA 68
Type Checking 13 DMA Byte Count 68
type qualifiers 19 DMA Desitination Address 68
typecast 13
typecasting 18 DMA Mode Register 68
ungetc() 162 DMA Source Address 68
ungetch() 129 DMA Status Register 68
Unix DMODE 68

C compiler 16 DSTAT 68
V7 25 FRC 68

unlink() 163 Free Running Counter 68
unsigned 23 IAR1H 68
unsigned char 21 IAR1L 68

HI-TECH C – User’s Manual 169

ICR 68 INC 55
IL 68 IND 55
Interrupt Vector Regis- INDR 56
Ter 68 INI 56
ITC 68 INIR 56
MAR1B 68 JP 56
MAR1H 68 JR 56
MAR1L 68 LD 56,57,58,59
MMU 68 LDD 59
OMCR 68 LDDR 59
RCR 68 LDI 59
Refresh Control Register 68 LDIR 59
 MLT 59
RLDR0H 68 NEG 59
RLDR0L 68 NOP 59
RLDR1H 68 OR 59,60
RLDR1L 68 OTDM 61
SAR0B 68 OTDMR 60
SAR0H 68 OTDR 60
SAR0L 68 OTIM 61
STAT0 68 OTIMR 60
STAT1 68 OTIR 60
TCR 68 OUT 60
TDR0 68 OUT0 60
TDR1 68 OUTD 60
TIMER 0 68 OUTI 61
TIMER 1 68 POP 61
TMDR0H 68 PUSH 61
TMDR0L 68 RES 61,62,63
TMDR1H 68 RET 63
TMDR1L 68 RETI 63
TRDR 68 RETN 63
TSR0 68 RL 63
TSR1 68 RLA 63

Z80 Instructions 50 RLC 63
ADC 51 RLCA 63
ADD 51 RLD 63
AND 51 RR 63,64
BIT 52,53 RRA 64
CALL 53 RRC 64
CCF 53 RRCA 64
CP 53,54 RRD 64
CPD 54 RST 64
CPDR 54 SBC 64
CPI 54 SCF 64
CPIR 54 SET 64,65,66
CPL 54 SLA 66
DAA 54 SLP 66
DEC 54 SRA 66
DI 54 SRL 67
DJNZ 54 SUB 67
EI 54 TST 67
EX 55 TSTIO 67
EXX 55 XOR 67
HALT 55 Z80 pseudo ops
IM 55 IRP 47
IN 55 IRPC 47
IN0 55 ZAS directives 8

170 HI-TECH C – User’s Manual

Title 48 operators 38
ZAS options program sections 39

-J 35 PSECT 43
-L 36 psects 39,43
-N 35 pseudo ops 40
-O 36 relocatable object code 39
-U 35
-W 36 temporary labels 37

ZAS psect flags Z180 35
ABS 43 Zilog 35
GLOBAL 43 _exit() 115
LOCAL 43 _getargs() 127
OVRLD 43
PURE 43
ZAS pseudo ops 40
COND 42
DB 40
DEFB 40
DEFF 41
DEFL 41
DEFM 42
DEFS 41
DEFW 41
ELSE 42
END 42
ENDC 42
ENDM 44
EQU 41
GLOBAL 43
IF 42
LOCAL 45
MACRO 44
ORG 44
PSECT 43
REPT 46

ZAS
64180 35
arithmetic overflow 35
binary constants 37
character constants 38
condition codes 48
conditional assembly 42
constants 37
directives 48
extended condition codes 48
external symbols 35
floating point constants 38
hexadecimal constants 37
jump optimization 35
jumps 35
labels 36
listing 36
macros 44
mnemonics 35
octal constants 37
opcode constants 38

